Skip to main content
Log in

Structure Property Correlation of Gravity Die-Cast and Rheocast Al–Mg–Sc–Zr in situ Nano-TiB2 Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study investigates the structure-property relationship of gravity die-cast and rheocast in situ processed 1wt%TiB2/Al-3.5Mg-0.15Sc-0.075Zr composites. The reinforcement was synthesized via the reaction of fluoride salts (K2TiF6 and KBF4) in the melt at 750 °C for an hour. The cooling slope technique was used for rheocasting, wherein the melt (pouring temperature of 700 °C) was allowed to flow over the cooling slope at an angle of 60°. Thereafter, all samples (gravity die cast and rheocast) were aged at 300 °C for 5 h. Microstructural characterization, hardness measurements, tensile tests, and fractography were necessary supplements to this investigation. The results obtained from this investigation infer: (a) The presence of nano-TiB2 particles increases the ductility (15%) of the gravity die-cast specimens; (b) rheocasting increases the strength of the specimen due to transformation from dendritic to equiaxed dendritic morphology and uniform particle distribution (reduced agglomeration). (c) Rheocast and aged specimens show maximum strength and adequate ductility due to the combined effects of structure refinement, reduced agglomeration, and the formation of fine precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M.D. Salvador, V. Amigo, N. Martinez, C. Ferrer, Development of Al–Si–Mg alloys reinforced with diboride particles. J. Mater. Process. Technol. (2003). https://doi.org/10.1016/S0924-0136(03)00438-2

    Article  Google Scholar 

  2. A. Mandal, B.S. Murty, M. Chakraborty, Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear (2009). https://doi.org/10.1016/j.wear.2008.12.011

    Article  Google Scholar 

  3. Y. Zhang, N. Ma, H. Wang, Y. Le, X. Li, Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. (2007). https://doi.org/10.1016/j.matdes.2005.07.015

    Article  Google Scholar 

  4. J. Fjellstedt, A.E. Jarfors, On the precipitation of TiB2 in aluminum melts from the reaction with KBF4 and K2TiF6. Mater. Sci. Eng. A (2005). https://doi.org/10.1016/j.msea.2005.09.054

    Article  Google Scholar 

  5. K.S. Prasad, B.S. Murty, P. Pramanik, P.G. Mukunda, M. Chakraborty, Reaction of fluoride salts with aluminium. Mater. Sci. Technol. (1996). https://doi.org/10.1179/mst.1996.12.9.766

    Article  Google Scholar 

  6. H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, J.G. Wang, J.B. Li, Modification of Mg2Si in Mg–Si alloys with K2TiF6, KBF4 and KBF4+ K2TiF6. J. Alloys Compd. (2005). https://doi.org/10.1016/j.jallcom.2004.06.027

    Article  Google Scholar 

  7. J. Röyset, N. Ryum, Scandium in aluminium alloys. Int. Mater. Rev. (2005). https://doi.org/10.1179/174328005X14311

    Article  Google Scholar 

  8. V. Singh, K.S. Prasad, A.A. Gokhale, Microstructure and age hardening response of cast Al-Mg-Sc-Zr alloys. J. Mater. Sci. (2004). https://doi.org/10.1023/B:JMSC.0000021465.99764.b5

    Article  Google Scholar 

  9. K.L. Kendig, D.B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. (2002). https://doi.org/10.1016/S1359-6454(02)00258-6

    Article  Google Scholar 

  10. A.W. Yu, C.G. Yang, P. He, H. Chen, Effect of Ti and Zr composite refiner on microstructure and tensile properties of pure aluminium. Adv. Mater. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.1056.47

    Article  Google Scholar 

  11. D. Mukherjee, M. Mukherjee, N. Mandal, S.K. Samanta, A. Maiti, Effect of micro-alloying on the characteristics of as-cast Al-Zn-Cu-Mg-X alloy with varying Cu and Zn. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2023.105445

    Article  Google Scholar 

  12. A.K. Lohar, B.N. Mondal, S.C. Panigrahi, Effect of Mg on the microstructure and mechanical properties of Al0. 3Sc0. 15Zr-TiB 2 composite. J. Mater. Eng. Perform. (2011). https://doi.org/10.1007/s11665-010-9829-4

    Article  Google Scholar 

  13. S. Thadela, B. Mandal, P. Das, H. Roy, A.K. Lohar, S.K. Samanta, Rheologicalbehavior of semi-solid TiB2 reinforced Al composite. Trans. Nonferrous Met. Soc. China (2015). https://doi.org/10.1016/S1003-6326(15)63908-5

    Article  Google Scholar 

  14. H. Khosravi, F. Akhlaghi, Comparison of microstructure and wear resistance of A356–SiCp composites processed via compocasting and vibrating cooling slope. Trans. Nonferrous Met. Soc. China (2015). https://doi.org/10.1016/S1003-6326(15)63867-5

    Article  Google Scholar 

  15. S. Yadav, S. Kumar, S.P. Tewari, S.C. Ram, R. Prasad, M. Deo, J.K. Singh, Influence of high amplitude mould vibration on the morphology of silicon in the Al-Si alloy (A308). SILICON (2023). https://doi.org/10.1007/s12633-022-01997-w

    Article  Google Scholar 

  16. D.B. Spencer, R. Mehrabian, M.C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Mater. Trans. B (1972). https://doi.org/10.1007/BF02642580

    Article  Google Scholar 

  17. Z.Y. Wang, Z.S. Ji, L.X. Sun, H.Y. Xu, Microstructure of semi-solid ADC12 aluminum alloy adopting new SIMA method. Trans. Nonferrous Met. Soc. China (2010). https://doi.org/10.1016/S1003-6326(10)60574-2

    Article  Google Scholar 

  18. D.H. Kirkwood, Semisolid metal processing. Int. Mater. Rev. (1994). https://doi.org/10.1179/imr.1994.39.5.173

    Article  Google Scholar 

  19. Z. Fan, Semisolid metal processing. Int. Mater. Rev. (2002). https://doi.org/10.1179/095066001225001076

    Article  Google Scholar 

  20. S.K. Gautam, H. Roy, A.K. Lohar, S.K. Samanta, Studies on mold filling behavior of Al–10.5 Si–1.7 Cu Al alloy during rheo pressure die casting system. Inter. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-00958-2

    Article  Google Scholar 

  21. H.V. Atkinson, Semisolid processing of metallic materials. Mater. Sci. Technol. (2010). https://doi.org/10.1179/026708310X12815992418012

    Article  Google Scholar 

  22. T. Haga, S. Suzuki, Casting of aluminum alloy ingots for thixoforming using a cooling slope. J. Mater. Process. Technol. (2001). https://doi.org/10.1016/S0924-0136(01)00888-3

    Article  Google Scholar 

  23. S. Samat, M.Z. Omar, A.H. Baghdadi, I.F. Mohamed, A.M. Aziz, Mechanical properties and microstructures of a modified Al–Si–Cu alloy prepared by thixoforming process for automotive connecting rods. J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2020.12.085

    Article  Google Scholar 

  24. K.A. Guler, A. Kisasoz, O.Z. Gokhan, A. Karaaslan, Cooling slope casting of AA7075 alloy combined with reheating and thixoforging. Trans. Nonferrous Met. Soc. China (2019). https://doi.org/10.1016/S1003-6326(19)65129-0

    Article  Google Scholar 

  25. Kumar S.D., Mandal A., Chakraborty M., Cooling slope casting process of semi-solid aluminum alloys: a review. Int. J. Eng. Res. Technol. (2014). IJERTV3IS070312

  26. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali, M.N. Mohammed, B. Rashid, Dry sliding wear behaviour of thixoformed Al-5.7 Si–2Cu-0.3 Mg alloys at high temperatures using Taguchi method. Wear (2020). https://doi.org/10.1016/j.wear.2019.203134

    Article  Google Scholar 

  27. P. Das, S.K. Samanta, T. Ray, B.R. Venkatpathi, Mechanical properties and tensile fracture mechanism of rheocast A356 Al alloy using cooling slope. Adv. Mater. Res. (2012). https://doi.org/10.4028/www.scientific.net/AMR.585.354

    Article  Google Scholar 

  28. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, H. Wang, Mechanical properties of in-situ TiB2/A356 composites. Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2013.10.021

    Article  Google Scholar 

  29. S.K. Gautam, N. Mandal, H. Roy, A.K. Lohar, S.K. Samanta, G. Sutradhar, Optimization of processing parameters of cooling slope process for semi-solid casting of ADC 12 Al alloy. J. Braz. Soc. Mech. Sci. Eng. (2022). https://doi.org/10.1007/s40430-018-1213-6

    Article  Google Scholar 

  30. P. Das, S.K. Samanta, B.R.K. Venkatpathi, H. Chattopadhyay, P. Dutta, Microstructural evolution of A356 Al alloy during flow along a cooling slope. Trans. Indian Inst. Metal (2012). https://doi.org/10.1007/s12666-012-0208-8

    Article  Google Scholar 

  31. S. Yadav, S.P. Tewari, J.K. Singh, S.C. Ram, Effects of mechanical vibration on the physical, metallurgical and mechanical properties of cast A308 (LM21) aluminum alloy. Int. J. Miner. Metall. Mater. (2022). https://doi.org/10.1007/s12613-020-2209-7

    Article  Google Scholar 

  32. S.C. Ram, K. Chattopadhyay, I. Chakrabarty, High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners. J. Alloys. Compds. (2017). https://doi.org/10.1016/j.jallcom.2017.06.306

    Article  Google Scholar 

  33. S. Ma, Y. Wang, X. Wang, Microstructures and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in-situ TiB2 particulates. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.139603

    Article  Google Scholar 

  34. Y. Xue, Z. Lou, Q. Hao, X. Li, W. Yu, H. Zhang, P. Wang, X. Wang, C. Yin, Insight into the precipitation behavior and mechanical properties of Sc-Zr micro-alloying TiB2/Al-4.5 Cu composites. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.167209

    Article  Google Scholar 

  35. S.K. Gautam, H. Roy, A.K. Lohar, S.K. Samanta, G. Sutradhar, Effect of processing routes on structure-property correlationship of ADC 12 Al alloy. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aaec2c

    Article  Google Scholar 

  36. M. Emamy, M. Mahta, J. Rasizadeh, Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. (2006). https://doi.org/10.1016/j.compscitech.2005.04.016

    Article  Google Scholar 

  37. J. Nampoothiri, R.S. Harini, S.K. Nayak, B. Raj, K.R. Ravi, Post in-situ reaction ultrasonic treatment for generation of Al–4.4 Cu/TiB2 nanocomposite: a route to enhance the strength of metal matrix nanocomposites. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.05.067

    Article  Google Scholar 

  38. C.B. Fuller, D.N. Seidman, D.C. Dunand, Mechanical properties of Al (Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. (2003). https://doi.org/10.1016/S1359-6454(03)00320-3

    Article  Google Scholar 

  39. S.L. Lu, S.S. Wu, Z.M. Zhu, A.N. Ping, Y.W. Mao, Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy. Trans. Nonferrous Met. Soc. China 20, 758–762 (2010). https://doi.org/10.1016/S1003-6326(10)60577-8

    Article  Google Scholar 

  40. M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  Google Scholar 

  41. S.C. Ram, K. Chattopadhyay, I. Chakrabarty, Microstructures and high temperature mechanical properties of A356-Mg2Si functionally graded composites in as-cast and artificially aged (T6) conditions. J. Alloys Compds. (2019). https://doi.org/10.1016/j.jallcom.2019.07.075

    Article  Google Scholar 

  42. Yadav, S., Kumar, S., Tewari, S.P., Ram, S.C., Prasad, R., Sinha, N.K., Deo, M., Singh, J.K., Influence of high-intensity horizontal mould vibration on the density, grain refinement and mechanical characteristics of a die cast aluminium alloy (LM21). In: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, (2023). https://doi.org/10.1177/09544089221109739

Download references

Acknowledgements

The authors would like to thank the Director, CSIR-CMERI for his approval to conduct the research. The authors would like to extend their thanks to Advanced Casting Research Group CMERI-Durgapur.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Roy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Gautam, S.K., Roy, H. et al. Structure Property Correlation of Gravity Die-Cast and Rheocast Al–Mg–Sc–Zr in situ Nano-TiB2 Composite. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01223-2

Keywords

Navigation