Skip to main content
Log in

Influence of Copper Addition on Microstructure, Mechanical and Thermal Properties of Al-Zn-Mg Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this research paper, the effect of the addition of copper (0.02 to 3.32 wt.%) on microstructure, mechanical and thermal properties of Al-Zn-Mg alloy are studied using an optical microscope, scanning electron microscope (SEM), X-ray diffractometer (XRD), Vicker’s microhardness tester, universal testing machine (UTM) and differential scanning calorimeter (DSC). Precipitates (η-MgZn2 phases) are present in as-cast Al-Zn-Mg alloy. SEM and XRD analyses have shown the presence of η (MgZn2) and θ (Al2Cu) precipitate in the as-cast Al-Zn-Mg-Cu alloy. Micro-Vickers hardness increases from 121.3 HV1 to 153.1 HV1 for the initial increase in copper content (0.02 to 1.54 wt.%) and then decreases to 137.3 HV1 (3.32 wt.% copper). The melting point decreases continuously with increased copper content from 619.8 °C (0.02 wt.% Cu) to 608.5 °C (3.32 wt.% Cu). Peak compressive stress, absorbed energy per unit volume, yield stress is observed to increase by 43.6%, 75.4%, and 59.3%, respectively, for the rise in copper content (0.02 wt.% to 1.54 wt.%) in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. L. Liu, Y.-Y. Jia, J.-T. Jiang, B. Zhang, G.-A. Li, W.-Z. Shao, L. Zhen, The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys. J. Alloys Compd. 799, 1–14 (2019). https://doi.org/10.1016/j.jallcom.2019.05.189

    Article  CAS  Google Scholar 

  2. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32, 131–172 (1996). https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  3. J.K. Odusote, P.A. Ajayi, Mechanical properties and microstructure of recycled aluminum cast with zinc and copper additions. Int. J. Met. 10, 483–490 (2016). https://doi.org/10.1007/s40962-016-0060-4

    Article  Google Scholar 

  4. S.-S. Wang, I.-W. Huang, L. Yang, J.-T. Jiang, J.-F. Chen, S.-L. Dai, D.N. Seidman, G.S. Frankel, L. Zhen, Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys. J. Electrochem. Soc. 162, C150–C160 (2015). https://doi.org/10.1149/2.0301504jes

    Article  CAS  Google Scholar 

  5. Y. Chen, Z. Liu, S. Liu, H. Guo, J. Liu, X. Sheng, Effect of Cu on the hot tearing susceptibility of Al–6Zn–2.5Mg–xCu alloy. Int. J. Met. 15, 130–140 (2021). https://doi.org/10.1007/s40962-020-00438-x

    Article  CAS  Google Scholar 

  6. H. Li, F. Cao, S. Guo, Y. Jia, D. Zhang, Z. Liu, P. Wang, S. Scudino, J. Sun, Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J. Alloys Compd. 719, 89–96 (2017). https://doi.org/10.1016/j.jallcom.2017.05.101

    Article  CAS  Google Scholar 

  7. M.F. Ibrahim, A.M. Samuel, F.H. Samuel, A preliminary study on optimizing the heat treatment of high strength Al–Cu–Mg–Zn alloys. Mater. Des. 57, 342–350 (2014). https://doi.org/10.1016/j.matdes.2013.11.078

    Article  CAS  Google Scholar 

  8. B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J. Alloys Compd. 820, 153092 (2020). https://doi.org/10.1016/j.jallcom.2019.153092

    Article  CAS  Google Scholar 

  9. X.-M. Li, M.J. Starink, Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys. Mater. Sci. Technol. 17, 1324–1328 (2001). https://doi.org/10.1179/026708301101509449

    Article  CAS  Google Scholar 

  10. Y. Liao, X. Han, M. Zeng, M. Jin, Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 66, 581–586 (2015). https://doi.org/10.1016/j.matdes.2014.05.003

    Article  CAS  Google Scholar 

  11. W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 657, 269–283 (2016). https://doi.org/10.1016/j.msea.2016.01.039

    Article  CAS  Google Scholar 

  12. J. Tang, J. Wang, J. Teng, G. Wang, D. Fu, H. Zhang, F. Jiang, Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation. Vacuum 184, 109941 (2021). https://doi.org/10.1016/j.vacuum.2020.109941

    Article  CAS  Google Scholar 

  13. J. Tang, H. Zhang, J. Teng, D. Fu, F. Jiang, Effect of Zn content on the static softening behavior and kinetics of Al–Zn–Mg–Cu alloys during double-stage hot deformation. J. Alloys Compd. 806, 1081–1096 (2019). https://doi.org/10.1016/j.jallcom.2019.07.332

    Article  CAS  Google Scholar 

  14. X. Wang, M. Guo, J. Luo, J. Zhu, J. Zhang, L. Zhuang, Effect of Zn on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloys with a medium number of Fe-rich phase particles. Mater Charact 134, 123–133 (2017). https://doi.org/10.1016/j.matchar.2017.10.012

    Article  CAS  Google Scholar 

  15. M. Salarvand, S.M.A. Boutorabi, M. Pourgharibshahi, M. Tamizifar, Effect of cooling rate on the microstructure and mechanical properties of high-zinc AA 5182 aluminum wrought alloy cast by the ablation green sand mold casting process. Int. J. Met. 15, 1464–1475 (2021). https://doi.org/10.1007/s40962-021-00578-8

    Article  CAS  Google Scholar 

  16. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  17. L.-M. Wu, W.-H. Wang, Y.-F. Hsu, S. Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloys Compd. 456, 163–169 (2008). https://doi.org/10.1016/j.jallcom.2007.02.054

    Article  CAS  Google Scholar 

  18. Y.-C. Chiu, K.-T. Du, H.-Y. Bor, G.-H. Liu, S.-L. Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys. Mater. Chem. Phys. 247, 122853 (2020). https://doi.org/10.1016/j.matchemphys.2020.122853

    Article  CAS  Google Scholar 

  19. T. Wang, L. Yang, Z. Tang, C. Liu, Y. Ma, L. Wu, H. Yan, Z. Yu, W. Liu, Effect of aging treatment on microstructure, mechanical and corrosion properties of 7055 aluminum alloy prepared using powder by-product. Mater. Sci. Eng. A 822, 141606 (2021). https://doi.org/10.1016/j.msea.2021.141606

    Article  CAS  Google Scholar 

  20. Y. Zhang, R. Li, P. Chen, X. Li, Z. Liu, Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. J. Alloys Compd. 808, 151634 (2019). https://doi.org/10.1016/j.jallcom.2019.07.346

    Article  CAS  Google Scholar 

  21. L. Stemper, M.A. Tunes, P. Oberhauser, P.J. Uggowitzer, S. Pogatscher, Age-hardening response of AlMgZn alloys with Cu and Ag additions. Acta Mater. 195, 541–554 (2020). https://doi.org/10.1016/j.actamat.2020.05.066

    Article  CAS  Google Scholar 

  22. Y. Alemdağ, T. Savaşkan, Mechanical and tribological properties of Al–40Zn–Cu alloys. Tribol. Int. 42, 176–182 (2009). https://doi.org/10.1016/j.triboint.2008.04.008

    Article  CAS  Google Scholar 

  23. A. Ghosh, M. Ghosh, A.H. Seikh, N.H. Alharthi, Phase transformation and dispersoid evolution for Al-Zn-Mg-Cu alloy containing Sn during homogenisation. J. Mater. Res. Technol. 9, 1–12 (2020). https://doi.org/10.1016/j.jmrt.2019.08.055

    Article  CAS  Google Scholar 

  24. A. Woźnicki, B. Leszczyńska-Madej, G. Włoch, J. Grzyb, J. Madura, D. Leśniak, Homogenization of 7075 and 7049 aluminium alloys intended for extrusion welding. Metals. 11, 338 (2021). https://doi.org/10.3390/met11020338

    Article  CAS  Google Scholar 

  25. J. Zhao, Y. Deng, J. Tang, J. Zhang, Influence of strain rate on hot deformation behavior and recrystallization behavior under isothermal compression of Al-Zn-Mg-Cu alloy. J. Alloys Compd. 809, 151788 (2019). https://doi.org/10.1016/j.jallcom.2019.151788

    Article  CAS  Google Scholar 

  26. H. Zhang, N. Jin, J. Chen, Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature. Trans. Nonferrous Met. Soc. China 21, 437–442 (2011). https://doi.org/10.1016/S1003-6326(11)60733-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikunj Patel.

Ethics declarations

Conflict of interest

On behalf of the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Pradhan, A.K. Influence of Copper Addition on Microstructure, Mechanical and Thermal Properties of Al-Zn-Mg Alloys. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01214-3

Keywords

Navigation