Skip to main content

Advertisement

Log in

Effect of Samarium (Sm) Addition on Microstructure and Mechanical Properties of AA5083 Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Researchers are interested in reaping the potential benefits of incorporating small amounts of rare earth elements into aluminum alloys to attain finer grain size and to improve mechanical properties like toughness. This research investigates the effects of samarium (Sm) addition at concentrations of 0.5%, 1.0%, and 1.5% by weight on the microstructural and mechanical properties of AA5083 alloy. Optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), X-ray diffraction (XRD), tensile testing machine (UTM), Vickers microhardness testing, and Charpy instrumented impact test were employed to evaluate the microstructure and mechanical properties of both as cast and solution treated (ST) samples. The samarium (Sm) is a beneficial grain refiner, leading to tailored properties in the AA5083 alloy. The results indicate that adding 1 wt% Sm generated significant enhancements in mechanical properties, such as tensile strength increased by 236 MPa and an elongation of 13.1% with a 27% reduction in grain size. However, incorporating 1.5 wt% Sm had an adverse impact on material properties, such as the grain size of the material increased by 22.73% and reduction in the tensile strength by 31%, corresponding to 1 wt% Sm added AA5083 alloy. Impact energy was reduced with the addition of Sm to the AA5083 alloy, both in as cast and ST samples. Furthermore, fractography was performed after impact and tensile testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. D.M. Fouad, W.H. El-Garaihy, M.M. Ahmed, I. Albaijan, M.M.E.S. Seleman, H.G. Salem, Grain structure evolution and mechanical properties of multi-channel spiral twist extruded AA5083. Metals 11(8), 1276 (2021). https://doi.org/10.3390/met11081276

    Article  CAS  Google Scholar 

  2. M.A. Zare, R. Taghiabadi, M.H. Ghoncheh, Effect of cooling rate on microstructure and mechanical properties of AA5056 Al-Mg alloy. Inter. Metalcast. 16, 1533–1543 (2022). https://doi.org/10.1007/s40962-021-00704-6

    Article  CAS  Google Scholar 

  3. A.Y. Algendy, K. Liu, P. Rometsch, N. Parson, X.-G. Chen, Effects of AlMn dispersoids and Al3(Sc, Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys. Mater. Sci. Eng., A 855, 143950 (2022). https://doi.org/10.1016/j.msea.2022.143950

    Article  CAS  Google Scholar 

  4. M. Kılınç, L. Elen, H. Ahlatcı et al., Investigation of A new type of aluminum-magnesium alloy with bismuth additions subjected to thermomechanical heat treatment. Inter. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01059-w

    Article  Google Scholar 

  5. N.D. Alexopoulos, M. Tiryakiogˇlu, A.N. Vasilakos, S.K. Kourkoulis, The effect of Cu, Ag, Sm and Sr additions on the statistical distributions of Si particles and tensile properties in A357–T6 alloy castings. Mater. Sci. Eng. A 604, 40–45 (2014). https://doi.org/10.1016/j.msea.2014.02.084

    Article  CAS  Google Scholar 

  6. Z. Mei, Z. Liu, S. Bai, J. Wang, J. Cao, Effects of yttrium additions on microstructures and mechanical properties of cast Al-Cu-Mg-Ag alloys. J. Alloys Compd. 870, 159435 (2021). https://doi.org/10.1016/j.jallcom.2021.159435

    Article  CAS  Google Scholar 

  7. X. Zhang, F. Mei, H. Zhang, S. Wang, C. Fang, H. Hao, Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloys. Mater. Sci. Eng.: A 552, 230–235 (2012). https://doi.org/10.1016/j.msea.2012.05.035

    Article  CAS  Google Scholar 

  8. J.Y. Zhang, Y.H. Gao, C. Yang et al., Microalloying Al alloys with Sc: a review. Rare Met. 39, 636–650 (2020). https://doi.org/10.1007/s12598-020-01433-1

    Article  CAS  Google Scholar 

  9. X. Wang, G. Chen, B. Li et al., Effects of Sc, Zr and Ti on the microstructure and properties of Al alloys with high Mg content. Rare Met. 29, 66–71 (2010). https://doi.org/10.1007/s12598-010-0012-8

    Article  CAS  Google Scholar 

  10. D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J. Alloys Compd. 352(1–2), 84–88 (2003). https://doi.org/10.1016/S0925-8388(02)01162-3

    Article  CAS  Google Scholar 

  11. S. Min, C. Kanghua, H. Lanping, Effects of Ce and Ti on the microstructures and mechanical properties of an Al-Cu-Mg-Ag alloy. Rare Met. 26(1), 28–32 (2007). https://doi.org/10.1016/S1001-0521(07)60023-0

    Article  Google Scholar 

  12. W.-T. Wang, X.-M. Zhang, Z.-G. Gao, Y.-Z. Jia, L.-Y. Ye, D.-W. Zheng, L. Liu, Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J. Alloys Compd. 491(1–2), 366–371 (2010). https://doi.org/10.1016/j.jallcom.2009.10.185

    Article  CAS  Google Scholar 

  13. A. Bommareddy, M.Z. Quadir, M. Ferry, Time and temperature regime of continuous grain coarsening in an ECAP-processed Al(0.1wt%Sc) alloy. Int. J. Alloys Compd. 527, 145–151 (2012). https://doi.org/10.1016/j.jallcom.2012.02.181

    Article  CAS  Google Scholar 

  14. Yl. Duan, J. Qian, D. Xiao et al., Effect of Sc and Er additions on superplastic ductilities in Al-Mg-Mn-Zr alloy. J. Cent. South Univ. 23, 1283–1292 (2016). https://doi.org/10.1007/s11771-016-3178-x

    Article  CAS  Google Scholar 

  15. X. Hu, F. Jiang, F. Ai, H. Yan, Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. 538, 21–27 (2012). https://doi.org/10.1016/j.jallcom.2012.05.089

    Article  CAS  Google Scholar 

  16. M.E. Van Dalen, T. Gyger, D.C. Dunand, D.N. Seidman, Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys. Acta Materialia 59(20), 7615–7626 (2011). https://doi.org/10.1016/j.actamat.2011.09.019

    Article  CAS  Google Scholar 

  17. A.A. Al-Bakoosh, J. Idris, Effect of Cerium and Praseodymium additions on impact toughness of AA5083 alloy at room temperature and sub-zero-temperature. Contemp. Eng. Sci. 11, 2551–2562 (2020). https://doi.org/10.12988/ces.2018.85255

    Article  CAS  Google Scholar 

  18. D. Fang, G. Bi, J. Jiang et al., Influences of Y and Y-rich mischmetal additions on microstructure and compressive properties of as-cast Al-Mg-Mn alloy. J. Mater. Eng. Perform. 22, 1201–1207 (2013). https://doi.org/10.1007/s11665-012-0394-x

    Article  CAS  Google Scholar 

  19. R. Ahmad, N.A. Wahab, S. Hasan, Z. Harun, M.M. Rahman, N.R. Shahizan, Effect of erbium addition on the microstructure and mechanical properties of aluminium alloy. Key Eng. Mater. 796, 62–66 (2019). https://doi.org/10.4028/www.scientific.net/kem.796.62

    Article  Google Scholar 

  20. S.A. Bagaber, T. Abdullahi, Z. Harun et al., The effect of lanthanum addition on the microstructure and mechanical properties of A390 aluminium alloy. Arab. J. Sci. Eng. 42, 4559–4564 (2017). https://doi.org/10.1007/s13369-017-2553-8

    Article  CAS  Google Scholar 

  21. M. Kaiser, S. Datta, A. Roychowdhury et al., Effect of scandium additions on the tensile properties of cast Al-6Mg alloys. J. Mater. Eng. Perform. 17, 902–907 (2008). https://doi.org/10.1007/s11665-008-9242-4

    Article  CAS  Google Scholar 

  22. Z. Lei, S. Wen, H. Huang, W. Wei, Z. Nie, Grain refinement of aluminum and aluminum alloys by Sc and Zr. Metals 13(4), 751 (2023). https://doi.org/10.3390/met13040751

    Article  CAS  Google Scholar 

  23. F. Czerwinski, Critical assessment 36: assessing differences between the use of cerium and scandium in aluminium alloying. Mater. Sci. Technol. 36(3), 255–263 (2020). https://doi.org/10.1080/02670836.2019.1702775

    Article  CAS  Google Scholar 

  24. H. Qiu, H. Yan, Z. Hu, Modification of near-eutectic Al-Si alloys with rare earth element samarium. J. Mater. Res. 29, 1270–1277 (2014). https://doi.org/10.1557/jmr.2014.113

    Article  CAS  Google Scholar 

  25. H. Qiu, H. Yan, Hu. Zhi, Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. J. Alloys Compd. 567, 77–81 (2013). https://doi.org/10.1016/j.jallcom.2013.03.050

    Article  CAS  Google Scholar 

  26. D. Ferdian, J.R. Pratama, Y. Pratesa, Effect of samarium on microstructure and intermetallic formation in Al-5Zn-0.5 Si alloy. IOP Conf. Ser. Mater. Sci. Eng. 541(1), 012024 (2019). https://doi.org/10.1088/1757-899X/541/1/012024

    Article  CAS  Google Scholar 

  27. Z. Li, Z. Hu, H. Yan, Effect of samarium (Sm) addition on microstructure and mechanical properties of Al-5Cu alloys. Technol.-Mat. Sci. Edit. 31, 624–629 (2016). https://doi.org/10.1007/s11595-016-1420-x

    Article  CAS  Google Scholar 

  28. D. Zhemchuzhnikova, A. Mogucheva, R. Kaibyshev, Mechanical properties and fracture behavior of an Al–Mg–Sc–Zr alloy at ambient and subzero temperatures. Mater. Sci. Eng. A 565, 132–141 (2013). https://doi.org/10.1016/j.msea.2012.12.017

    Article  CAS  Google Scholar 

  29. K. Son, M.E. Kassner, T.-K. Lee, J.-W. Lee, Mg effect on the cryogenic temperature toughness of Al-Mg alloys. Mater. Des. 224, 111336 (2022). https://doi.org/10.1016/j.matdes.2022.111336

    Article  CAS  Google Scholar 

  30. R. Rodríguez Baracaldo, C.S. Cubides Herrera, D.A. Villalba-Rondón, Charpy impact toughness and transition temperature in ferrite–perlite steel. Sci. Tech. 24, 200 (2019). https://doi.org/10.22517/23447214.19971

    Article  Google Scholar 

  31. K. Eisawi, M. Tash, W. Khalifa, I. El-Mahallawi, Refinement effect of Zirconium and Samarium on Al-4Mg cast alloy. Mater. Res. Express 8(4), 046522 (2021). https://doi.org/10.1088/2053-1591/abf588

    Article  CAS  Google Scholar 

  32. X. Zhang, Z. Wang, Z. Zhou et al., Influence of rare earth (Ce and La) addition on the performance of Al- 3.0 wt% Mg alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 611–618 (2017)

    Article  CAS  Google Scholar 

  33. H. Chen, T. Yu, Z. Qi et al., Effect of Minor Er on the Microstructure and Properties of Al-6.0Mg-0.4Mn-0.1Cr-0.1Zr Alloys. J. Mater. Eng. Perform. 27, 5709–5717 (2018). https://doi.org/10.1007/s11665-018-3678-y

    Article  CAS  Google Scholar 

  34. S.H. Zhou, R.E. Napolitano, Energetics of nonequilibrium solidification in Al-Sm. Phys. Rev. B 78(18), 184111 (2008). https://doi.org/10.1103/PhysRevB.78.184111

    Article  CAS  Google Scholar 

  35. Q. Li, J. Li, B. Li et al., Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20%Si casting alloy. Inter Metalcast 12, 554–564 (2018). https://doi.org/10.1007/s40962-017-0193-0

    Article  CAS  Google Scholar 

  36. A.V. Pozdniakov, V. Yarasu, R. Yu Barkov, O.A. Yakovtseva, S.V. Makhov, V.I. Napalkov, Microstructure and mechanical properties of novel Al-Mg-Mn-Zr-Sc-Er alloy. Mater. Lett. 202, 116–119 (2017). https://doi.org/10.1016/j.matlet.2017.05.053

    Article  CAS  Google Scholar 

  37. J. Zhang, J.J. Zhao, R.L. Zuo, Microstructure and mechanical properties of micro-alloying modified Al-Mg alloys, in International Conference on Power Electronics and Energy Engineering. (Atlantis Press, 2015), pp.153–156. https://doi.org/10.2991/peee-15.2015.41

    Chapter  Google Scholar 

  38. T. Gong, J. Dong, Z. Shi, X. Yaer, H. Liu, Effects of Ce-Rich mischmetal on microstructure evolution and mechanical properties of 5182 aluminum alloy. Materials 12(24), 4230 (2019). https://doi.org/10.3390/ma12244230

    Article  CAS  Google Scholar 

  39. X. Zhang, Z.H. Wang, Z.H. Zhou, J.M. Xu, Z.J. Zhong, H.L. Yuan, G.W. Wang, May. Effects of rare earth on microstructure and mechanical properties of Al-3.2 Mg alloy. Mater. Sci. Forum 817, 192–197 (2015). https://doi.org/10.4028/www.scientific.net/msf.817.192

    Article  Google Scholar 

  40. F. Tioguem, M. Maziere, F. Tankoua, A. Galtier, A.-F. Gourgues-Lorenzon, Identification of ductile to brittle transition temperature by using plane strain specimen in tensile test and correlation with instrumented Charpy impact test: experimental and numerical study. Mech. Ind. 19(1), 107 (2018). https://doi.org/10.1051/meca/2017034

    Article  CAS  Google Scholar 

  41. T. Abdullahi, Z. Harun, M.H.D. Othman, A.B.Y. Blaou, A.H. Nuhu, S.A. Bagaber, Effect of yttrium on the microstructure and mechanical properties of a5083 secondary aluminum alloy. J. Adv. Res. Fluid Mech. Therm. Sci. 62(2), 168–178 (2019)

    Google Scholar 

Download references

Acknowledgements

Central Research Facility (CRF) - NITK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Udaya Bhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravindh, G., Kumar, G.V.P. & Udaya Bhat, K. Effect of Samarium (Sm) Addition on Microstructure and Mechanical Properties of AA5083 Alloy. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01196-2

Keywords

Navigation