Skip to main content
Log in

Effect of Manganese and Molybdenum on the Microstructure, the Shape of Secondary Precipitation, and the Wear Behavior of a High Chromium Cast Iron

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In various industrial fields, where the material wear is a prevalent stress, the microstructure of wear-resistant materials plays a very important role. The operational behavior of these materials differs depending on whether the microstructure consists of an austenitic or martensitic matrix. Moreover, the type, shape, and morphology of the secondary carbides produced by the heat treatment have a significant effect on the wear resistance of the material. This work investigates the effect of manganese and molybdenum on the microstructure type, the secondary precipitation, the thermal behavior, the microhardness, and the wear resistance of high chromium cast iron balls, used for raw material grinding. Basic and alloyed cast iron samples were processed in an induction furnace and characterized by spectroscopic, optical, and SEM microscopy, XRD, and DSC techniques. The secondary precipitation grain surface was measured using the ImageJ software. Microhardness and wear tests were considered to check the sample abrasion and friction resistance. The obtained results show the effect of manganese and molybdenum on the microstructural and wear properties of the cast iron. Compared to the basic cast iron, the addition of 3% of manganese favorably affects the secondary precipitation by inducing dense precipitation of carbides with polygonal morphology. On the other hand, the effect of the addition of manganese and molybdenum was reduced by a factor of six, resulting in a lower proportion of secondary carbides but better wear properties. The recorded thermograms show that molybdenum shifts the eutectic transition peak to higher temperatures compared to the manganese effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. A. Edson, I. da Silva, N. Rabelo, I. de Melo, P. Pinheiro, L.R. de Silva, Characterisation and machinability of high chromium hardened white cast iron with and without the addition of niobium. Wear 460–461, 203463 (2020). https://doi.org/10.1016/j.wear.2020.203463

    Article  CAS  Google Scholar 

  2. H. Pourasiabi, J.D. Gates, Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.110261

    Article  Google Scholar 

  3. M.J. Kadhim, A.N. Abood, R.S. Yaseen, The role of manganese on microstructure of high chromium white cast iron. Modern Appl. Sci. (2011). https://doi.org/10.5539/mas.v5n1p179

    Article  Google Scholar 

  4. M. IkZeda, T. Umeda, T.C.P. Tong, T. Suzuki, N. Niwa, O. Kato, Effect of molybdenum addition on solidification structure, mechanical properties and wear resistivity of high chromium cast irons. ISIJ Int. 32, 1157–1162 (1992). https://doi.org/10.2355/isijinternational.32.1157

    Article  Google Scholar 

  5. F. Maratray, R. Usseglio-Nanot, Factors affecting the structure of chromium and chromium-molybdenum white irons, First edition, Climax Molybdenum, Paris, France, pp 5-32, (1970)

  6. Ö.N. Doğan, J.A. Hawk, G. Laird, Metall. Mater. Trans. A 28(6), 1315–1328 (1997). https://doi.org/10.1007/s11661-997-0267-3

    Article  Google Scholar 

  7. C.P. Tabrett, I.R. Sare, M.R. Ghomashchi, Int. Mater. Rev. (1996). https://doi.org/10.1179/imr.1996.41.2.59

    Article  Google Scholar 

  8. A. Bedolla-Jacuinde, W.M. Rainforth, Wear (2001). https://doi.org/10.1016/S0043-1648(01)00633-0

    Article  Google Scholar 

  9. K.-H.Z. Gahr, D.V. Doane, Optimizing fracture toughness and abrasion resistance in white cast irons. Metall. Trans. A 11(4), 613–620 (1980). https://doi.org/10.1007/BF02670698

    Article  Google Scholar 

  10. M.A. Guitar, U.P. Nayak, D. Britz, F. Mucklich, The effect of thermal processing and chemical composition on secondary carbide precipitation and hardness in high-chromium cast irons. Int. J. Met. 14, 755–765 (2020). https://doi.org/10.1007/s40962-020-00407-4

    Article  CAS  Google Scholar 

  11. Y. Li, P. Li, K. Wang, H. Li, M. Gong, W. Tong, Microstructure and mechanical properties of a Mo alloyed high chromium cast iron after different heat treatments. Vacuum 156, 59–67 (2018). https://doi.org/10.1016/j.vacuum.2018.07.013

    Article  CAS  Google Scholar 

  12. D. Li, L. Liu, Y. Zhang, C. Ye, X. Ren, Y. Yang, Q.G. Yang, Phase diagram calculation of high chromium cast irons and influence of its chemical composition. Mater. Design 30, 340–345 (2009)

    Article  Google Scholar 

  13. J.A. Pero-Sanz, D. Plaza, J.I. Verdeja, J. Asensio, Metallographic characterization of hypoeutectic martensitic white cast irons: Fe-C-Cr system. Mater. Charact. 43, 33–39 (1999). https://doi.org/10.1016/S1044-5803(99)00002-9

    Article  CAS  Google Scholar 

  14. Y. Matsubara, N. Sasaguri, K.K. ShimizuSungYu, Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements. Wear 250, 502–510 (2001). https://doi.org/10.1016/S0043-1648(01)00599-3

    Article  Google Scholar 

  15. K. H. Zum Gahr, Microstructure and wear materials, Elsevier, Amsterdam (1987). 1st Edition - March 1, 1987, eBook ISBN: 9780080875743

  16. G. Laird II., G.L.F. Powell, Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons. Met. Trans. A. 22, 981 (1993). https://doi.org/10.1007/BF02656520

    Article  Google Scholar 

  17. S.I. Maldonado-Ruíz, D.I. Martínez, A. Velasco, R. Colás, Wear of white cast irons by impact of direct reduced iron pellets. Wear 259(1–6), 361–366 (2005). https://doi.org/10.1016/j.wear.2005.02.061

    Article  CAS  Google Scholar 

  18. T. Meebupha, S. Inthidec, P. Sricharoenchai, Y. Matsubara, Effect of molybdenum content on heat treatment behavior of multi-alloyed white cast iron. Mater. Trans. 58(4), 655–662 (2017). https://doi.org/10.2320/matertrans.M2016396

    Article  CAS  Google Scholar 

  19. W.C. Chang, H.H. Tsun, M. Qian, Formation of spheroidal carbide in vanadium white cast iron by rare earth modification. Mater. Sci. Technol. 6, 905–910 (1990). https://doi.org/10.1179/mst.1990.6.9.905

    Article  CAS  Google Scholar 

  20. J. Wang, C. Li, H. Liua, H. Yang, B. Shen, S. Gao, S. Huang, The precipitation and transformation of secondary carbides in a high chromium cast iron. Mater. Charact. 56, 73–78 (2006). https://doi.org/10.1016/j.matchar.2005.10.002

    Article  CAS  Google Scholar 

  21. S. Inthidech, Y. Matsubara, Effects of carbon balance and heat treatment on hardness and volume fraction of retained austenite of semi-multi-alloyed white cast iron. Int. J. Metalcast. 14(1), 132–143 (2019). https://doi.org/10.1007/s40962-019-00343-y

    Article  CAS  Google Scholar 

  22. E. Albertin, A. Sinatora, Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear 250, 492–501 (2001). https://doi.org/10.1016/S0043-1648(01)00664-0

    Article  Google Scholar 

  23. K.M. Ibrahim, M.M. Ibrahim, Heat treatment in high chromium white cast iron Ti alloy. J. Metall. (2014). https://doi.org/10.1155/2014/856408

    Article  Google Scholar 

  24. L. Lutterotti, Maud, a rietveld analysis program designed for the internet and experiment integration. Acta Cryst. A56, s54 (2000). https://doi.org/10.1107/S0108767300021954

    Article  Google Scholar 

  25. P. Ortega-Cubillos, P.A. Nannetti-Bernardini, M. Celso-Fredel, R.A. Campos, Wear resistance of high chromium white cast iron for coal grinding rolls. Rev. Fac. Ing. Univ. Antioquia 76, 134–142 (2015). https://doi.org/10.17533/udea.redin.n76a16

    Article  CAS  Google Scholar 

  26. J. Pero, D. Plaza, J. Verdeja, J. Asensio, Metallographic characterization of hypoeutectic martensitic white cast irons: Fe-C-Cr system. Mater. Charact. 43, 33–39 (1999). https://doi.org/10.1016/S1044-5803(99)00002-9

    Article  Google Scholar 

  27. H. Gasan, F. Erturk, Effects of a destabilization heat treatment on the microstructure and abrasive wear behavior of high-chromium white cast iron investigated using different characterization techniques. Metall. Mater. Trans. A. 44, 4993–5005 (2013). https://doi.org/10.1007/s11661-013-1851-3

    Article  CAS  Google Scholar 

  28. J. Dodd, R.L. Parks, Factors affecting the production and performance of thick section high chromium–molybdenum alloy iron castings: I.–metallurgical considerations. Int. Cast Met. J. 5(3), 47–54 (1980)

    Google Scholar 

  29. Y.L. Su, D. Li, X.K. Zhang, Optimizing hardenability of high chromium white cast iron. China Foundry 3, 284–287 (2006)

    CAS  Google Scholar 

  30. S. Imurai, C. Thanachayanont, J.T.H. Pearce, K. Tsuda, T. Chairuangsri, Effects of Mo on microstructure of as-cast 28wt% Cr–2.6wt.% C–(0–10) wt% Mo irons. Mater. Charact. 90, 99–112 (2014). https://doi.org/10.1016/j.matchar.2014.01.014

    Article  CAS  Google Scholar 

  31. C. Scandian, C. Boher, J.D.B. de Mello, F. Rézaï-Aria, Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: the relationship between microstructure and wear. Wear 267, 401–408 (2009). https://doi.org/10.1016/j.wear.2008.12.095

    Article  CAS  Google Scholar 

  32. M. Ikeda, T. Umeda, C.P. Tong, T. Suzuki, N. Niwa, O. Kato, Effect of molybdenum addition on solidification structure, mechanical properties and wear resistivity of high chromium cast iron. ISIJ Int. 32, 1157–1162 (1992). https://doi.org/10.2355/isijinternational.32.1157

    Article  CAS  Google Scholar 

  33. J.P. Breyer, G. Walmag, Metallurgy of high chromium-molybdenum white iron and steel rolls, https://www.yumpu.com/en/document/view/7681873/metallurgy-of-high-chromium-molybdenum-white-iron-and-mkbbe. (2002)

  34. J. Asensio, J.A. Pero-Sanz, J.I. Verdeja, Microstructure selection criteria for cast irons with more than 10 wt% chromium for wear applications. Mater. Charact. 49(2), 83–93 (2002). https://doi.org/10.1016/S1044-5803(02)00260-7

    Article  CAS  Google Scholar 

  35. M. Filipovic, E. Romhanji, Z. Kamberovic, Chemical composition and morphology of M7C3 eutectic carbide in high chromium white cast iron alloyed with vanadium. ISIJ Int. 52(12), 2200–2204 (2012). https://doi.org/10.2355/isijinternational.52.2200

    Article  CAS  Google Scholar 

  36. R. Reda, A. Nofal, Kh. Ibrahim, A. Hussien, investigation of improving wear performance of hypereutectic 15%cr-2%mo white irons. China Foundry 4, 438–446 (2010)

    Google Scholar 

  37. Z. Sun, R. Zuo, C. Li, B. Shen, J. Yan, S. Huang, TEM study on precipitation and transformation of secondary carbides in 16Cr–1Mo–1Cu white iron subjected to subcritical treatment. Mater. Charact. 53, 335–424 (2004). https://doi.org/10.1016/j.matchar.2004.09.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the precious help of the research center CREDEG/Alger for the SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bouhamla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhamla, K., Hadji, A., Maouche, H. et al. Effect of Manganese and Molybdenum on the Microstructure, the Shape of Secondary Precipitation, and the Wear Behavior of a High Chromium Cast Iron. Inter Metalcast 18, 1062–1074 (2024). https://doi.org/10.1007/s40962-023-01043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01043-4

Keywords

Navigation