Skip to main content

Advertisement

Log in

Effect of Ca Addition on Mechanical Properties and the Ignition Temperature of Cast WE43 alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, WE43-xCa (0, 1, 2 wt%) magnesium alloys were prepared by electromagnetic stirring (EMS) casting, and the solid solution-treated WE43-xCa (1, 2 wt%) alloys were subjected to aging treatment at 225 °C for different times. The results showed that the grain size of the alloy is refined after the addition of Ca. However, when the Ca content was high, the continuous reticular phase distributed along the grain boundaries and the generated Mg2Ca brittle phase led to the degradation of the mechanical properties. After the 225 °C × 10 h aging treatment, the 1Ca alloy had the best mechanical properties with a tensile strength of 284 MPa, yield strength of 227 MPa, and elongation of 9.0%. This material could meet the requirements of structural parts of high-speed railways. The combustion temperature test exhibited that the WE43-xCa alloy was able to be kept at 900 °C without ignition. The addition of Ca resulted in the formation of thin and continuous CaO oxide film on the outermost layer of the alloy, which helped prevent internal oxidation of the alloy, thereby increasing the ignition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. J. Zhang, D. Yao, M. Shen, R. Wang, S. Guo, Effect of multi-layered IIR/EP on noise reduction of aluminium extrusions for high-speed trains. Compos. Struct. 262, 113638 (2021). https://doi.org/10.1016/j.compstruct.2021.113638

    Article  CAS  Google Scholar 

  2. J.H. He, A brief analysis of the application of new lightweight materials for high-speed trains from the perspective of energy-saving, Railway Energy. Sav. Environ Prot. Occup. Saf. Health 10, 33–35 (2020)

    Google Scholar 

  3. H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, G.W. Qin, Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength-ductility synergy. Acta Mater. 186, 278–290 (2020). https://doi.org/10.1016/j.actamat.2020.01.017

    Article  CAS  Google Scholar 

  4. E.E. Asik, S. Bor, Fatigue behavior of Ti–6Al–4V foams processed by magnesium space holder technique. Mater. Sci. Eng. A 621, 157–165 (2015). https://doi.org/10.1016/j.msea.2014.10.068

    Article  CAS  Google Scholar 

  5. T. Tanski, P. Snopinski, W. Pakiela, W. Borek, K. Prusik, S. Rusz, Structure and Properties of AlMg Alloy after combination of ECAP and post-ECAP ageing. Arch. Civ. Mech. Eng. 16(3), 325–334 (2016). https://doi.org/10.1016/j.acme.2015.12.004

    Article  Google Scholar 

  6. S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, J. Yoon, S.H. Park, Microstructural evolution of extruded AZ31 alloy with bimodal structure during compression. Mater. Sci. Eng. A 702, 1–9 (2017). https://doi.org/10.1016/j.msea.2017.06.102

    Article  CAS  Google Scholar 

  7. C. Lou, Q. Sun, Y. Ren, L.J. Chai, R.S. Qiu, Q.S. Yang, X.Y. Zhang, Mis-layered structure of twin-twin interface with 7.4 degrees <-12-10> misorientation relationship in Mg alloy. Mater. Sci. Eng. A 763, 138115 (2019). https://doi.org/10.1016/j.msea.2019.138115

    Article  CAS  Google Scholar 

  8. C.C. Liu, S. Lu, Y.T. Fu, H.P. Zhang, Flammability and the oxidation kinetics of the magnesium alloys AZ31, WE43, and ZE10. Corros. Sci. 100, 177–185 (2015). https://doi.org/10.1016/j.corsci.2015.07.020

    Article  CAS  Google Scholar 

  9. F. Czerwinski, Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 86, 1–16 (2014). https://doi.org/10.1016/j.corsci.2014.04.047

    Article  CAS  Google Scholar 

  10. N. Zhou, Z.Y. Zhang, J. Dong, L. Jin, W.J. Ding, Selective oxidation behavior of an ignition-proof Mg–Y–Ca–Ce alloy. J. Rare Earths 31, 1003–1008 (2013). https://doi.org/10.1016/S1002-0721(13)60021-6

    Article  CAS  Google Scholar 

  11. Q.Y. Tan, Yu. Yin, N. Mo, M.X. Zhang, A. Atrens, Recent understanding of the oxidation and burning of magnesium alloys. Surf. Innov. 7, 71–92 (2019). https://doi.org/10.1680/jsuin.18.00062

    Article  Google Scholar 

  12. J. Bian, B. Yu, L. Jiang, J. Hao, R. Li, Research on the effect of Sr and Zr on microstructure and properties of Mg–4Zn alloy. Int. J. Metalcast. 15, 1483–1498 (2021). https://doi.org/10.1007/s40962-021-00576-w

    Article  CAS  Google Scholar 

  13. X. Su, Z. Feng, F. Wang, Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy. Int. J. Metalcast. 15, 576–586 (2021). https://doi.org/10.1007/s40962-020-00493-4

    Article  CAS  Google Scholar 

  14. J.F. Fan, C.L. Yang, G. Han, S. Fang, W.D. Yang, B.S. Xu, Oxidation behavior of ignition-proof magnesium alloys with rare earth addition. J. Alloy Compd. 509, 2137–2142 (2011). https://doi.org/10.1016/j.jallcom.2010.10.168

    Article  CAS  Google Scholar 

  15. Y.M. Kim, C.D. Yim, H.S. Kim, B.S. You, Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures. Scr. Mater. 65, 958–961 (2011). https://doi.org/10.1016/j.scriptamat.2011.08.019

    Article  CAS  Google Scholar 

  16. J.R. Li, A.Y. Zhang, H.C. Pan, Y.P. Ren, Z.R. Zeng, Q.Y. Huang, C.L. Yang, L.F. Ma, G.W. Qin, Effect of extrusion speed on microstructure and mechanical properties of the Mg–Ca binary alloy. J. Magnes. Alloy 9(4), 1297–1303 (2021). https://doi.org/10.1016/j.jma.2020.05.011

    Article  CAS  Google Scholar 

  17. S. Inoue, M. Yamasaki, Y. Kawamura, Oxidation behavior and incombustibility of molten Mg–Zn–Y alloys with Ca and Be addition. Corros. Sci. 149, 133–143 (2019). https://doi.org/10.1016/j.corsci.2018.12.037

    Article  CAS  Google Scholar 

  18. S. Babaniaris, R. Varma, A. Beer, Ignition and mechanical properties of hot extruded magnesium alloys with trace yttrium additions. Jom 72, 3011–3019 (2020). https://doi.org/10.1007/s11837-020-04115-6

    Article  CAS  Google Scholar 

  19. D.S. Aydin, M. Hoseini, M.O. Pekguleryuz, Understanding the high temperature oxidation and ignition behaviour of two-phase Mg–Nd alloys and a comparison to single phase Mg–Nd. Philos. Mag. 95, 259–274 (2015). https://doi.org/10.1080/14786435.2014.998735

    Article  CAS  Google Scholar 

  20. Y.J. Wu, L.M. Peng, S. Zhao, D.J. Li, F. Huang, W.J. Ding, Ignition-proof properties of a high-strength Mg–Gd–Ag–Zr alloy. J. Shanghai Jiaotong Univ. 17, 643–647 (2012). https://doi.org/10.1007/s12204-012-1338-1

    Article  Google Scholar 

  21. A. Soltan, M.S. Dargusch, Z.M. Shi, F. Jones, B. Wood, D. Gerrard, A. Atrens, Effect of corrosion inhibiting compounds on the corrosion behaviour of pure magnesium and the magnesium alloys EV31A, WE43B and ZE41A. J. Magnes. Alloy 9, 432–455 (2020). https://doi.org/10.1016/j.jma.2020.07.006

    Article  CAS  Google Scholar 

  22. Q.Y. Sun, D.R. Liu, L.P. Wang, Influences of rod diameter and sand-mould strength on hot tearing in Mg WE43A constrained rod castings. Int. J. Metalcast. 13, 407–416 (2019). https://doi.org/10.1007/s40962-018-0265-9

    Article  CAS  Google Scholar 

  23. B. Jiang, W.J. Liu, D. Qiu, M.X. Zhang, F.S. Pan, Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy. Mater. Chem. Phys. 133(2–3), 611–616 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.087

    Article  CAS  Google Scholar 

  24. L.A. Villegas-Armenta, R.A.L. Drew, M.O. Pekguleryuz, The ignition behavior of Mg–Ca binary alloys: the role of heating rate. Oxid. Met. 93, 545–558 (2020). https://doi.org/10.1007/s11085-020-09970-x

    Article  CAS  Google Scholar 

  25. Y. Cai, H. Yan, M. Zhu, K. Zhang, X. Yi, R. Chen, High-temperature oxidation behavior and corrosion behavior of high strength Mg–xGd alloys with high Gd content. Corros. Sci. 193, 109872 (2021). https://doi.org/10.1016/j.corsci.2021.109872

    Article  CAS  Google Scholar 

  26. L. Wu, H. Li, Effect of selective oxidation on corrosion behavior of Mg–Gd–Y–Zn–Zr alloy. Corros. Sci. 142, 238–248 (2018). https://doi.org/10.1016/j.corsci.2018.07.026

    Article  CAS  Google Scholar 

  27. J. Wang, W. Jiang, Y. Ma, Y. Li, S. Huang, Substantial corrosion resistance improvement in heat-treated Mg–Gd–Zn alloys with a long period stacking ordered structure. Mater. Chem. Phys. 203, 352–361 (2017). https://doi.org/10.1016/j.matchemphys.2017.09.035

    Article  CAS  Google Scholar 

  28. Y. Bai, X. Yu, L. Wang, N. Zhang, B. Ye, W. Cheng, X. Kong, New HPDC Mg-RE based alloy with exceptional strength and creep resistance at elevated temperature. Mater. Sci. Eng. A 840, 142921 (2022). https://doi.org/10.1016/j.msea.2022.142921

    Article  CAS  Google Scholar 

  29. J.P. Park, M.G. Kim, U.S. Yoon, W.J. Kim, Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method. J. Mater. Sci. 44(1), 47–54 (2009). https://doi.org/10.1007/s10853-008-3130-z

    Article  CAS  Google Scholar 

  30. Y. Chen, L. Zhang, W. Liu, G. Wu, W. Ding, Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Mater. Des. 95, 398–409 (2016). https://doi.org/10.1016/j.matdes.2016.01.131

    Article  CAS  Google Scholar 

  31. M. Lotfpour, A. Bahmani, H. Mirzadeh, M. Emamy, M. Malekan, W.J. Kim, M. Taghizadeh, A. Afsharnaderi, Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg-Mg2Si composites. Mater. Sci. Eng. A 820, 141574 (2021). https://doi.org/10.1016/j.msea.2021.141574

    Article  CAS  Google Scholar 

  32. Z. Nasiri, H. Mirzadeh, M.S. Khorrami, M. Emamy, Synergistic effects of alloying, homogenization, and hot extrusion on the mechanical properties of as-cast Mg–Al–Ca magnesium alloys. Arch. Civ. Mech. Eng. 21, 126 (2021). https://doi.org/10.1007/s43452-021-00283-7

    Article  Google Scholar 

  33. I. Gokalp, A. Incesu, Effect of Ca addition to the elevated temperature mechanical properties of AZ series magnesium alloys. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00872-z

    Article  Google Scholar 

  34. A. Incesu, A. Gungor, Biocorrosion and mechanical properties of ZXM100 and ZXM120 magnesium alloys. Int. J. Metalcast. 13, 905–914 (2019). https://doi.org/10.1007/s40962-019-00308-1

    Article  CAS  Google Scholar 

  35. A. Incesu, A. Gungor, Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling. J. Mater. Sci. Mater. Med. 31, 123 (2020). https://doi.org/10.1007/s10856-020-06468-5

    Article  CAS  Google Scholar 

  36. S.R. Agnew, R.P. Mulay, F. Iii, C.A. Calhoun, B. Clausen, In situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater. 61(10), 3769–3780 (2013). https://doi.org/10.1016/j.actamat.2013.03.010

    Article  CAS  Google Scholar 

  37. A. Prasad, Z. Shi, A. Atrens, Influence of Al and Y on the ignition and flammability of Mg alloys. Corros. Sci. 55, 153–163 (2012). https://doi.org/10.1016/j.corsci.2011.10.014

    Article  CAS  Google Scholar 

  38. C.L. Cheng, Q. Lan, Q.Y. Liao, Q.C. Le, X.Q. Li, X.R. Chen, J.Z. Cui, Effect of Ca and Gd combined addition on ignition temperature and oxidation resistance of AZ80. Corros. Sci. 160, 108176 (2019). https://doi.org/10.1016/j.corsci.2019.108176

    Article  CAS  Google Scholar 

  39. Z. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, N. Birbilis, Magnesium extrusion alloys: a review of developments and prospects. Int. Mater. Rev. 64, 1–36 (2018). https://doi.org/10.1080/09506608.2017.1421439

    Article  CAS  Google Scholar 

  40. J. Kubasek, P. Minarik, K. Hosova, S. Sasek, M. Knapek, J. Vesely, J. Straska, D. Dvorsky, M. Cavojsky, D. Vojtech, Novel magnesium alloy containing Y, Gd and Ca with enhanced ignition temperature and mechanical properties for aviation applications. J. Alloy Compd. 877, 160089 (2021). https://doi.org/10.1016/j.jallcom.2021.160089

    Article  CAS  Google Scholar 

  41. D. Han, J. Zhang, J. Huang, Y. Lian, G. He, A review on ignition mechanisms and characteristics of magnesium alloys. J. Magnes. Alloy 8(2), 329–344 (2020). https://doi.org/10.1016/j.jma.2019.11.014

    Article  CAS  Google Scholar 

  42. G. Han, C. Ding, C. Gang, J. Huang, Development of non-flammable high strength extruded Mg–Al–Ca–Mn alloys with high Ca/Al ratio. J. Mater. Sci. Technol. 34(11), 2063–2068 (2018). https://doi.org/10.1016/j.jmst.2018.03.019

    Article  CAS  Google Scholar 

  43. N. Pilling, R. Bedworth, The oxidation of metals at high temperatures. J. Inst. Met. 29, 529–530 (1923)

    Google Scholar 

  44. C. Cheng, Q. Lan, W. An, Q. Le, X. Li, Effect of Ca additions on ignition temperature and multi-stage oxidation behavior of AZ80. Metals 8, 766 (2018). https://doi.org/10.3390/met8100766

    Article  CAS  Google Scholar 

  45. S.I. Inoue, M. Yamasaki, Y. Kawamura, Formation of an incombustible oxide film on a molten Mg–Al–Ca alloy. Corros. Sci. 122, 118–122 (2017). https://doi.org/10.1016/j.corsci.2017.01.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yu, B., Bian, J. et al. Effect of Ca Addition on Mechanical Properties and the Ignition Temperature of Cast WE43 alloys. Inter Metalcast 17, 3121–3132 (2023). https://doi.org/10.1007/s40962-023-00974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-00974-2

Keywords

Navigation