Skip to main content
Log in

Influence of Metal Casting Temperature and Cations on Phase Transformation of Silica Sand to Cristobalite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Due to its thermodynamic stability, silica sand is traditionally used during the metal casting process in foundries. The sand-casting process involves a wide range of organic and inorganic binders. Due to ease in mold making process and less adverse environmental impact, sodium silicate has emerged as the most popular binder. Sand castings exposed to elevated temperatures lose the binding property and can no longer be used in the foundries. Present work reports the formation of cristobalite, a polymorph of quartz in sodium silicate bonded sand exposed to temperature of 1000 °C. It was believed that sodium silicate is responsible for the conversion of silica sand into cristobalite, leading to the loss of binding property. To avoid cristobalite formation, further, the binder was replaced with sodium aluminate. The mineralogical characterization of such sand also showed the presence of cristobalite under the same experimental conditions. It was suspected that apart from sodium, other cations could also be responsible for cristobalite formation. To support this hypothesis, the sand was mixed with a solution of different cations, namely NaCl, KCl, KOH, CaCl2, Al2(SO4)3 and FeCl3 were calcined at two different temperatures. It was found that the conversion of silica sand to cristobalite takes place at a temperature of 1000 °C in the presence of monovalent cation sodium. In the presence of all other cations, the transformations occur at a temperature of 1250 °C. These conversions were supported using XRD, SEM-EDS and FTIR analyses. Reclamation of such sand is not possible due to its inertness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K.J. Hodder, R.J. Chalaturnyk, Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.06.008

    Article  Google Scholar 

  2. N. Kivi, A. Moore, K. Dyar, S. Haaf, Devitrification rates of fused silica in the presence of trace impurities, chancellor’s honors program projects. University of Tennessee, Knoxville (2016). https://trace.tennessee.edu/utk_chanhonoproj/1972

  3. A. Arulrajah, E. Yaghoubi, I. Monzur, S. Horpibulsuk, Sustain. Cities Soc. (2017). https://doi.org/10.1016/j.scs.2016.10.009

    Article  Google Scholar 

  4. “Foundry informatics centre, profile of indian foundry industry” 2022, http://foundryinfo-india.org/profile_of_indian.aspx. Accessed 02nd August 2022

  5. V. Merta, J. Beňo, T. Obzina, F. Radkovský, I. Kroupová, P. Lichý, M. Folta, K. Janovská, I. Nguyenová, M. Dostál, Metals. (2021). https://doi.org/10.3390/met11050733

    Article  Google Scholar 

  6. N. Ünlü, A. Odabaş, Inter. Metalcast. (2018). https://doi.org/10.1007/s40962-018-0210-y

    Article  Google Scholar 

  7. Y.A. Owusu, Adv. Colloid. Interf. Sci. (1982). https://doi.org/10.1016/0001-8686(82)85031-8

    Article  Google Scholar 

  8. M. Holtzer, A. Kmita, Mold and core sands in metalcasting: chemistry and ecology. Sustain. Dev. (2020). https://doi.org/10.1007/978-3-030-53210-9_9

    Article  Google Scholar 

  9. J.S. Kowalski, Arch. Foundry Eng. 10–3, 111–114 (2010)

    Google Scholar 

  10. I. Vasková, L. Varga, I. Prass, V. Dargai, M. Conev, M. Hrubovčáková, M. Bartošová, B. Buľko, P. Demeter, Metals. (2020). https://doi.org/10.3390/met10020235

    Article  Google Scholar 

  11. M. Dapiaggi, L. Pagliari, A. Pavese, L. Sciascia, M. Merli, F. Francescon, J. Eur. Ceram. Soc. (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.08.015

    Article  Google Scholar 

  12. A.M. Venezia, V. La Parola, A. Longo, A. Martorana, J. Solid State Chem. (2001). https://doi.org/10.1006/jssc.2001.9345

    Article  Google Scholar 

  13. N.P. Hoolikantimath, K.G. Guptha, R.K. Rao, P.A. Ghorpade, JOM. (2022). https://doi.org/10.1007/s11837-021-05056-4

    Article  Google Scholar 

  14. Z.T. Fan, N.Y. Huang, X.P. Dong, Int. J. Cast. Metal. Res. (2004). https://doi.org/10.1179/136404604225020551

    Article  Google Scholar 

  15. Q.Z. Sun, H. Du, P.Q. Zhang, Z.K. Zhao, J.G. Yan, Adv. Mat. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.1008

    Article  Google Scholar 

  16. S. Balbay, China Foundry. (2019). https://doi.org/10.1007/s41230-019-8144-4

    Article  Google Scholar 

  17. M. Fertani-Gmati, K. Brahim, I. Khattech, M. Jemal, Thermochim. Acta. (2014). https://doi.org/10.1016/j.tca.2014.09.003

    Article  Google Scholar 

  18. J. Theil, American foundry society proceedings, Schaumburg, IL USA. 11 (2011)

  19. A. Kazemia, M.A. Faghihi-Sani, H.R. Alizadeh, J. Eur. Ceram. Soc. (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.025

    Article  Google Scholar 

  20. L. Pagliari, M. Dapiaggi, A. Pavese, F. Francescon, J. Eur. Ceram. Soc. (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.014

    Article  Google Scholar 

  21. C.J. Horwell, B.J. Williamson, K. Donaldson, J.S. Le Blond, D.E. Damby, L. Bowen, Part. Fibre. Toxicol. (2012). https://doi.org/10.1186/1743-8977-9-44

    Article  Google Scholar 

  22. S. Hillier, D. Lumsdon, Clay Miner. (2008). https://doi.org/10.1180/claymin.2008.043.3.11

    Article  Google Scholar 

  23. G. Anbalagan, A.R. Prabakaran, S. Gunasekaran, J. Appl. Spectrosc. (2010). https://doi.org/10.1007/s10812-010-9297-5

    Article  Google Scholar 

  24. R. Zheng, Z. Ren, H. Gao, A. Zhang, Z. Bian, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.05.010

    Article  Google Scholar 

  25. Z. Qiao, Q. Liu, S. Zhang, Y. Wu, Solid State Sci. (2019). https://doi.org/10.1016/j.solidstatesciences.2019.105948

    Article  Google Scholar 

  26. E.R. Lippincott, A.V. Valkenburg, C.E. Weir, E.N. Bunting, J. Res. Natl. Inst. Stan. (1958). https://doi.org/10.6028/JRES.061.009

    Article  Google Scholar 

  27. B.K. Awuah, E.V. Kiti, I. Nkrumah, R.E. Ikyreve, I. Radecka, C. Williams, Desalin. Water. Treat. (2016). https://doi.org/10.1080/19443994.2015.1128361

    Article  Google Scholar 

  28. A.S. Khan, H. Khalid, Z. Sarfraz, M. Khan, J. Iqbal, N. Muhammad, M.A. Fareed, I.U. Rehman, Appl. Spectrosc. Rev. (2017). https://doi.org/10.1080/05704928.2016.1244069

    Article  Google Scholar 

  29. M.Y.A. Mollah, S. Promreuk, R. Schennach, D.L. Cocke, R. Güler, Fuel (1999). https://doi.org/10.1016/S0016-2361(99)00057-5

    Article  Google Scholar 

  30. U. Nurbaiti, S. Pratapa, J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/983/1/012014

    Article  Google Scholar 

Download references

Acknowledgment

The authors like to acknowledge Aqua Alloys Pvt. Ltd. Chandgad, Kolhapur, India, for providing Foundry facilities to carry out the research. The authors would also like to acknowledge USIC and SAIF from Karnatak University Dharwad, Karnataka, India, for providing support with instrumentation. The authors sincerely thank the department of chemistry/CMS, KLE Technological University, for extending the FTIR facility, which is purchased from Grant No.: GRD-540, Vision Group on Science and Technology, Karnataka, India.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, investigation and writing original draft was carried out by Nayana P. Hoolikantimath; Formal analysis and investigation was performed by Sanjeevkumar Dodamani; Methodology, supervision, project administration, and visualization was done by Dr. K. G. Guptha; Conceptualization, validation, supervision, resources, project administration was supported by Dr. Raghuraj K. Rao; Conceptualization, methodology, validation, writing original draft, visualization, supervision and project administration was carried out by Dr. Praveen A. Ghorpade.

Corresponding author

Correspondence to Praveen A. Ghorpade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoolikantimath, N.P., Dodamani, S., Guptha, K.G. et al. Influence of Metal Casting Temperature and Cations on Phase Transformation of Silica Sand to Cristobalite. Inter Metalcast 17, 2038–2049 (2023). https://doi.org/10.1007/s40962-022-00921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00921-7

Keywords

Navigation