Skip to main content
Log in

Mechanical and Dry Sliding Wear Behaviour of AZ31-TiO2 and AZ31-TiO2-Sn Metal Matrix Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The primary objectives of this study were to prepare, mechanically characterize, and evaluate the dry sliding wear behaviour of AZ31/(0.5, 1.5, and 2.5) wt% TiO2 metal matrix composites and hybrid AZ31/1.5 wt% TiO2/(3, 6, 9, and 12) wt% Sn metal matrix composites. The microstructural characteristics of the synthesized composites reveal the uniform distribution of the reinforcement particles. When the amount of reinforcement was increased, the tensile characteristics improved up to 1.5 wt% of TiO2 in single-reinforcement composites and 6 wt% of Sn in hybrid composites and then started to decline. A similar pattern was also shown by the microhardness and compressive properties. From the study of the mechanical behaviour of AZ31 composites reinforced with TiO2, the composite with 1.5 wt% of TiO2 had better mechanical characteristics, and the reinforcement amount was chosen to fabricate hybrid composites additionally reinforced with Sn microparticles. For the AZ31 alloy, AZ31/1.5TiO2, and the hybrid composites, dry wear experiments were carried out using a pin-on-disc tribometer at the normal loads of 10 N, 20 N, 30 N, and 40 N, a sliding speed of 0.5 m/s, and for a total distance of 1000 m. In comparison to other composite samples, the hybrid composite with specimens containing 6 wt% of Sn showed a notable improvement in mechanical and wear characteristics. Through FESEM and EDS, the morphological examination of the worn surfaces identified various wear mechanisms, including abrasion, adhesion, and delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Similar content being viewed by others

References

  1. G. Song, S. Song, A possible biodegradable magnesium implant material. Adv. Eng. Mater. 9, 298–302 (2007). https://doi.org/10.1002/adem.200600252

    Article  CAS  Google Scholar 

  2. A. Srinivasan, P. Ranjani, N. Rajendran, Electrochemical polymerization of pyrrole over AZ31 Mg alloy for biomedical applications. Electrochim. Acta 88, 310–321 (2013). https://doi.org/10.1016/j.electacta.2012.10.087

    Article  CAS  Google Scholar 

  3. S. Aravindan, P.V. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J. Magnes. Alloys 3(1), 52–62 (2015). https://doi.org/10.1016/j.jma.2014.12.008

    Article  CAS  Google Scholar 

  4. J. Satish, K.G. Satish, Preparation of magnesium metal matrix composites by powder metallurgy process, in IOP Conference Series: Materials Science and Engineering vol 310 (2018) p. 012130. https://doi.org/10.1088/1757-899X/310/1/012130

  5. D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994). https://doi.org/10.1179/imr.1994.39.1.1

    Article  CAS  Google Scholar 

  6. M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites: A review. J. Magnes. Alloys 5(2), 189–201 (2017). https://doi.org/10.1016/j.jma.2017.05.001

    Article  CAS  Google Scholar 

  7. A. Tahmasebifar, S.M. Kayhan, Z. Evis, A. Tezcaner, H. Çinici, M. Koç, Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. J. Alloys Compounds 687, 906–919 (2016). https://doi.org/10.1016/j.jallcom.2016.05.256

    Article  CAS  Google Scholar 

  8. Yu. Wenbo, X. Wang, H. Zhao, C. Ding, Z. Huang, H. Zhai, Z. Guo, S. Xiong, Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J. Alloy. Compd. 702, 199–208 (2017). https://doi.org/10.1016/j.jallcom.2017.01.231

    Article  CAS  Google Scholar 

  9. Yu. Wenbo, D. Chen, L. Tian, H. Zhao, X. Wang, Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases. J. Mater. Sci. Technol. 35(3), 275–284 (2019). https://doi.org/10.1016/j.jmst.2018.07.003

    Article  CAS  Google Scholar 

  10. J. Wei, G. Wang, X. Ji, K. Deng, F. Sha, Dynamic mechanical properties and constitutive relationship of particle-reinforced AZ91D composites. J. Alloy. Compd. 767, 210–214 (2018). https://doi.org/10.1016/j.jallcom.2018.06.049

    Article  CAS  Google Scholar 

  11. I. Aatthisugan, A. Razal Rose, D. Selwyn Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Magnes. Alloys 5(1), 20–25 (2017). https://doi.org/10.1016/j.jma.2016.12.004

    Article  CAS  Google Scholar 

  12. I. Raj, M. John, K. Manisekar, M. Gupta, Mechanical and wear properties of Mg/Mo nanocomposites. Metallic Mater. 57, 237–246 (2019). https://doi.org/10.4149/km_2019_4_237

    Article  CAS  Google Scholar 

  13. M.M. Jalilvand, Y. Mazaheri, Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing. Ceramics Int. 46(12), 20345–20356 (2020). https://doi.org/10.1016/j.ceramint.2020.05.123

    Article  CAS  Google Scholar 

  14. Yu. Huan, Yu. Haiping Zhou, L.R. Sun, Z. Wan, Hu. Lianxi, Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy. Adv. Powder Technol. 29(12), 3241–3249 (2018). https://doi.org/10.1016/j.apt.2018.09.001

    Article  CAS  Google Scholar 

  15. Wu. Liqun, Wu. Ruizhi, L. Hou, J. Zhang, M. Zhang, Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets(GNPs). J. Alloy. Compd. 750, 530–536 (2018). https://doi.org/10.1016/j.jallcom.2018.04.035

    Article  CAS  Google Scholar 

  16. C. Fang, G. Liu, H. Hao, X. Zhang, Effects of particle distribution on microstructural evolution and mechanical properties of TiB2/AZ31 composite sheets. Mater. Sci. Eng., A 684, 592–597 (2017). https://doi.org/10.1016/j.msea.2016.12.072

    Article  CAS  Google Scholar 

  17. A. Abbas, Song Jeng Huang, Beáta Ballóková, Katarína Sülleiová, Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process. Tribol. Int. 142, 105982 (2020). https://doi.org/10.1016/j.triboint.2019.105982

    Article  CAS  Google Scholar 

  18. G.K. Meenashisundaram, M.H. Nai, A. Almajid, M. Gupta, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications (1980-2015). Mater. Des. 65, 104–114 (2015). https://doi.org/10.1016/j.matdes.2014.08.041

    Article  CAS  Google Scholar 

  19. M. Zhou, X. Qu, L. Ren, L. Fan, Y. Zhang, Y. Guo, G. Quan, Q. Tang, B. Liu, H. Sun, The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials 10, 1385 (2017). https://doi.org/10.3390/ma10121385

    Article  CAS  Google Scholar 

  20. T.S. Srivatsan, C. Godbole, T. Quick et al., Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue. J. Materi Eng Perform 22, 439–453 (2013). https://doi.org/10.1007/s11665-012-0276-2

    Article  CAS  Google Scholar 

  21. R.J. Bright, G. Selvakumar, M. Sumathi, N. Lenin, Development, mechanical characterization and analysis of dry sliding wear behavior of AA6082 “Metakaolin metal matrix composites. Mater. Res. Exp. 6(12), 126516 (2019). https://doi.org/10.1088/2053-1591/ab52aa

    Article  CAS  Google Scholar 

  22. P. Hariharasakthisudhan, S. Jose, K. Manisekar, Dry sliding wear behaviour of single and dual ceramic reinforcements premixed with Al powder in AA6061 matrix. J. Market. Res. 8(1), 275–283 (2019). https://doi.org/10.1016/j.jmrt.2018.01.005

    Article  CAS  Google Scholar 

  23. F. Labib, H.M. Ghasemi, R. Mahmudi, Dry tribological behavior of Mg/SiCp composites at room and elevated temperatures. Wear 348–349, 69–79 (2016). https://doi.org/10.1016/j.wear.2015.11.021

    Article  CAS  Google Scholar 

  24. A. Mohamed, F. Samuel, A. Samuel et al., Influence of tin addition on the microstructure and mechanical properties of Al-Si-Cu-Mg and Al-Si-Mg casting alloys. Metall Mater Trans A 39, 490–501 (2008). https://doi.org/10.1007/s11661-007-9454-5

    Article  CAS  Google Scholar 

  25. W. Xiao, S. Jia, L. Wang, Wu. Yaoming, L. Wang, Effects of Sn content on the microstructure and mechanical properties of Mg–7Zn–5Al based alloys. Mater. Sci. Eng., A 527(26), 7002–7007 (2010). https://doi.org/10.1016/j.msea.2010.07.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thoufiq Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoufiq Mohammed, K., Manisekar, K. Mechanical and Dry Sliding Wear Behaviour of AZ31-TiO2 and AZ31-TiO2-Sn Metal Matrix Composites. Inter Metalcast 17, 1883–1898 (2023). https://doi.org/10.1007/s40962-022-00904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00904-8

Keywords

Navigation