Skip to main content
Log in

Rapid Casting of Biodegradable Porous Magnesium Scaffolds and Electrophoretic Deposition of 45S5 Bioactive Glass Nanoparticles Coatings on Porous Scaffolds: Characterization and In Vitro Bioactivity Analysis

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, three-dimensional (3D), biodegradable, porous magnesium (Mg) alloy scaffolds were fabricated using the rapid casting method. The casting models were welded onto a wax rod to produce a casting tree using a stereolithography (SLA) machine with castable wax. The model has a high surface area and porosity. The pore size, strut thickness, and porosity of the 3D porous scaffolds are 1.5 mm, 0.45 mm, and 71.68%, respectively. The relative density and surface area-to-volume ratio are also 3.53 and 5.43, respectively. The pure phase of 45S5 bioglass (BG) nanomaterial was successfully synthesized using the sol–gel method. The 45S5 BG was characterized using transmission electron microscope (TEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), thermogravimetric (TG) and derivative thermogravimetry (DTG) analyses. To improve the bioactivity and control the degradation rate of Mg alloy scaffolds, the porous surface of the Mg scaffold was coated with 45S5 BG nanomaterials using the electrophoretic deposition (EPD) method. The in vitro degradation test was then performed using simulated body fluid (SBF) for 48 h. The in vitro degradation test results showed that the mass loss percentages of both samples approached each other after 12 h. The uncoated sample lost more mass than the coated sample after 24 and 48 h. The results showed that the coated scaffolds had better bioactivity and greater resistance to degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. A.M. Lopera-Echavarría, D. Medrano-David, A.M. Lema-Perez et al., In vitro evaluation of confinement, bioactivity, and degradation of a putty type bone substitute. Materials Today Communications 26, 102105 (2021). https://doi.org/10.1016/j.mtcomm.2021.102105

    Article  CAS  Google Scholar 

  2. D. Zhao, T. Zhu, J. Li et al., Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioactive Mater. 6, 346–360 (2021). https://doi.org/10.1016/j.bioactmat.2020.08.016

    Article  CAS  Google Scholar 

  3. H.-Y. Lin, Y.-K. Huang, P.-Y. Hsu et al., Sintering of degradable bone substitutes at room temperature. Ceram. Int. 47, 21714–21720 (2021). https://doi.org/10.1016/j.ceramint.2021.04.185

    Article  CAS  Google Scholar 

  4. E. Koç, A. Incesu, A.N. Saud, Comparative study on dry and bio-corrosive wear behavior of Mg-xAl-3Zn Alloys (x = 0.5-1-2-3 wt.%). J. Mater. Eng. Perform. 31, 613–621 (2022). https://doi.org/10.1007/s11665-021-06144-x

    Article  CAS  Google Scholar 

  5. Y. Torres, J. Pavón, P. Trueba et al., Design, fabrication and characterization of titanium with graded porosity by using space-holder technique. Proc. Mater. Sci. 4, 115–119 (2014). https://doi.org/10.1016/j.mspro.2014.07.610

    Article  CAS  Google Scholar 

  6. X.Z. Lu, C.P. Lai, L.C. Chan, Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application. Mater. Des. 188, 108474 (2020). https://doi.org/10.1016/j.matdes.2020.108474

    Article  CAS  Google Scholar 

  7. C.E. Wen, Y. Yamada, K. Shimojima et al., Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater. Lett. 58, 357–360 (2004). https://doi.org/10.1016/S0167-577X(03)00500-7

    Article  CAS  Google Scholar 

  8. A. Yánez, M.P. Fiorucci, A. Cuadrado et al., Surface roughness effects on the fatigue behaviour of gyroid cellular structures obtained by additive manufacturing. Int. J. Fatigue 138, 105702 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105702

    Article  CAS  Google Scholar 

  9. A. Ataee, Y. Li, D. Fraser et al., Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 137, 345–354 (2018). https://doi.org/10.1016/j.matdes.2017.10.040

    Article  CAS  Google Scholar 

  10. K. Heim, F. García-Moreno, J. Banhart, Particle size and fraction required to stabilise aluminium alloy foams created by gas injection. Scripta Mater. 153, 54–58 (2018). https://doi.org/10.1016/j.scriptamat.2018.04.041

    Article  CAS  Google Scholar 

  11. N. Wang, E. Maire, X. Chen et al., Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams. Mater. Charact. 147, 11–20 (2019). https://doi.org/10.1016/j.matchar.2018.10.013

    Article  CAS  Google Scholar 

  12. O. Andersen, H. Göhler, C. Kostmann et al., Powder metallurgically manufactured cellular metals from carat gold alloys for decorative applications. Met. Powder Rep. 73, 72–79 (2018). https://doi.org/10.1016/j.mprp.2017.06.002

    Article  Google Scholar 

  13. H. Jain, G. Gupta, R. Kumar, D.P. Mondal, Microstructure and compressive deformation behavior of SS foam made through evaporation of urea as space holder. Mater. Chem. Phys. 223, 737–744 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.040

    Article  CAS  Google Scholar 

  14. A. Temiz, M. Yaşar, E. Koç, Fabrication of open-pore biodegradable magnesium alloy scaffold via infiltration technique. Inter Metalcast 16, 317–328 (2022). https://doi.org/10.1007/s40962-021-00604-9

    Article  CAS  Google Scholar 

  15. G.A. Lara-Rodriguez, I.A. Figueroa, M.A. Suarez et al., A replication-casting device for manufacturing open-cell Mg foams. J. Mater. Process. Technol. 243, 16–22 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.041

    Article  CAS  Google Scholar 

  16. R. Singh, P.D. Lee, R.J. Dashwood, T.C. Lindley, Titanium foams for biomedical applications: a review. Mater. Technol. 25, 127–136 (2010). https://doi.org/10.1179/175355510X12744412709403

    Article  CAS  Google Scholar 

  17. Y. Dou, S. Cai, X. Ye et al., 45S5 bioactive glass–ceramic coated AZ31 magnesium alloy with improved corrosion resistance. Surf. Coat. Technol. 228, 154–161 (2013). https://doi.org/10.1016/j.surfcoat.2013.04.022

    Article  CAS  Google Scholar 

  18. Y. Yang, C. Michalczyk, F. Singer et al., In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg. Appl. Surf. Sci. 355, 832–841 (2015). https://doi.org/10.1016/j.apsusc.2015.07.053

    Article  CAS  Google Scholar 

  19. B. Heublein, R. Rohde, V. Kaese et al., Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89, 651–656 (2003). https://doi.org/10.1136/heart.89.6.651

    Article  CAS  Google Scholar 

  20. Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021

    Article  CAS  Google Scholar 

  21. A. Abdal-hay, N.A.M. Barakat, J.K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram. Int. 39, 183–195 (2013). https://doi.org/10.1016/j.ceramint.2012.06.008

    Article  CAS  Google Scholar 

  22. M. Höhlinger, S. Heise, V. Wagener et al., Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Appl. Surf. Sci. 405, 441–448 (2017). https://doi.org/10.1016/j.apsusc.2017.02.049

    Article  CAS  Google Scholar 

  23. S. Heise, M. Höhlinger, Y.T. Hernández et al., Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochim. Acta 232, 456–464 (2017). https://doi.org/10.1016/j.electacta.2017.02.081

    Article  CAS  Google Scholar 

  24. Y. Goh, M. Akram, A. Alshemary, R. Hussain, Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass. Appl. Surf. Sci. 387, 1–7 (2016). https://doi.org/10.1016/j.apsusc.2016.06.054

    Article  CAS  Google Scholar 

  25. Y.-F. Goh, A.Z. Alshemary, M. Akram et al., In-vitro characterization of antibacterial bioactive glass containing ceria. Ceram. Int. 40, 729–737 (2014). https://doi.org/10.1016/j.ceramint.2013.06.062

    Article  CAS  Google Scholar 

  26. G. Kaur, O. Pandey, Singh K, et al., A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 102, 254–274 (2014). https://doi.org/10.1002/jbm.a.34690

    Article  CAS  Google Scholar 

  27. B. Garrido, I.G. Cano, S. Dosta, Adhesion improvement and in vitro characterisation of 45S5 bioactive glass coatings obtained by atmospheric plasma spraying. Surf. Coat. Technol. 405, 126560 (2021). https://doi.org/10.1016/j.surfcoat.2020.126560

    Article  CAS  Google Scholar 

  28. J.R. Jones, Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  Google Scholar 

  29. M.L. Dittler, I. Unalan, A. Grünewald et al., Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surf. B 182, 110346 (2019). https://doi.org/10.1016/j.colsurfb.2019.110346

    Article  CAS  Google Scholar 

  30. W. Cao, L.L. Hench, Bioactive materials. Ceram. Int. 22, 493–507 (1996). https://doi.org/10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  31. K. Huang, S. Cai, G. Xu et al., Preparation and characterization of mesoporous 45S5 bioactive glass–ceramic coatings on magnesium alloy for corrosion protection. J. Alloy. Compd. 580, 290–297 (2013). https://doi.org/10.1016/j.jallcom.2013.05.103

    Article  CAS  Google Scholar 

  32. M. Alaei, M. Atapour, S. Labbaf, Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications. Prog. Org. Coat. 147, 105803 (2020). https://doi.org/10.1016/j.porgcoat.2020.105803

    Article  CAS  Google Scholar 

  33. S. Seuss, A.R. Boccaccini, Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromol 14, 3355–3369 (2013). https://doi.org/10.1021/bm401021b

    Article  CAS  Google Scholar 

  34. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  35. H. Pirayesh, J.A. Nychka, Sol-Gel synthesis of Bioactive Glass-Ceramic 45S5 and its in vitro dissolution and mineralization behavior. J. Am. Ceram. Soc. 96, 1643–1650 (2013). https://doi.org/10.1111/jace.12190

    Article  CAS  Google Scholar 

  36. Z. Cai, Z. Liu, X. Hu et al., The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold. Bio-des Manuf. 2, 242–255 (2019). https://doi.org/10.1007/s42242-019-00054-7

    Article  Google Scholar 

  37. Y. Jin, H. Kong, X. Zhou et al., Design and characterization of sheet-based gyroid porous structures with bioinspired functional gradients. Materials 13, 3844 (2020). https://doi.org/10.3390/ma13173844

    Article  CAS  Google Scholar 

  38. L. Lefebvre, J. Chevalier, L. Gremillard et al., Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 55, 3305–3313 (2007). https://doi.org/10.1016/j.actamat.2007.01.029

    Article  CAS  Google Scholar 

  39. O.P. Filho, G.P. La Torre, L.L. Hench, Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30, 509–514 (1996). https://doi.org/10.1002/(SICI)1097-4636(199604)30:4%3c509::AID-JBM9%3e3.0.CO;2-T

    Article  Google Scholar 

  40. O. Peitl, E. Dutra Zanotto, L.L. Hench, Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J. Non-Cryst. Solids 292, 115–126 (2001). https://doi.org/10.1016/S0022-3093(01)00822-5

    Article  CAS  Google Scholar 

  41. L.L. Hench, Sol-gel materials for bioceramic applications. Curr. Opin. Solid State Mater. Sci. 2, 604–610 (1997). https://doi.org/10.1016/S1359-0286(97)80053-8

    Article  CAS  Google Scholar 

  42. L.L. Hench, D.L. Wheeler, D.C. Greenspan, Molecular control of bioactivity in Sol-Gel glasses. J. Sol-Gel. Sci. Technol. 13, 245–250 (1998). https://doi.org/10.1023/A:1008643303888

    Article  CAS  Google Scholar 

  43. Y. Li, S. Cai, G. Xu et al., Synthesis and characterization of a phytic acid/mesoporous 45S5 bioglass composite coating on a magnesium alloy and degradation behavior. RSC Adv. 5, 25708–25716 (2015). https://doi.org/10.1039/C5RA00087D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahim Temiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, A., Alshemary, A.Z., Akar, N. et al. Rapid Casting of Biodegradable Porous Magnesium Scaffolds and Electrophoretic Deposition of 45S5 Bioactive Glass Nanoparticles Coatings on Porous Scaffolds: Characterization and In Vitro Bioactivity Analysis. Inter Metalcast 17, 1871–1882 (2023). https://doi.org/10.1007/s40962-022-00903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00903-9

Keywords

Navigation