Skip to main content
Log in

Dissimilar Joining of Al/Mg Light Metals by Centrifugal Compound Casting Process

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The centrifugal casting process was used to join and investigate the Al/Mg bimetallic interface composed of commercially-pure aluminum and magnesium metals. In the first set of experiments, molten Al was poured into the solid Mg hollow cylinder, and vice-versa in the second group. The formation possibility of the metallurgical interface was examined. The rotation speed was selected as 1200 revolutions per minute (rpm). The preheating temperature in the case of Al casting and Mg casting was 200 °C and 450 °C, respectively. The characterization of bimetals showed that pouring Mg melt into the Al solid part led to a relatively continuous metallurgical bond. When the Al was cast into the Mg, and contrariwise, the interface thickness reached 2–5 mm and 1.6 mm, respectively. The results of energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) showed that intermetallic compounds multilayer might form at the interface in both cases. Furthermore, microhardness analysis conformed to the intermetallic compound formation with high hardness in the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. S. Emami, M. Divandari, E. Hajjari et al., Comparison between conventional and lost foam compound casting of Al/Mg light metals. Int. J. Cast Met. Res. 26, 43–50 (2013). https://doi.org/10.1179/1743133612Y.0000000037

    Article  CAS  Google Scholar 

  2. Z. Jiang, Z. Fan, W. Jiang et al., Interfacial microstructures and mechanical properties of Mg/Al bimetal produced by a novel liquid-liquid compound casting process. J. Mater. Process. Technol. 261, 149–158 (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.013

    Article  CAS  Google Scholar 

  3. M. Zamani, M. Divandari, M. Tamizifar, On the characteristics of friction stir welding lap joint of magnesium and aluminum. Iran. J. Mater. Sci. Eng. 15, 64–77 (2018). https://doi.org/10.22068/ijmse.15.1.64

    Article  Google Scholar 

  4. M. Valente, D. Marini, V. Genova et al., Lightweight metallic matrix composites: Development of new composites material reinforced with carbon structures. J. Appl. Biomater. Funct. Mater. (2019). https://doi.org/10.1177/2280800019840294

    Article  Google Scholar 

  5. M. Esmaily, J. Svensson, S. Fajardo et al., Fundamentals and advances in magnesium alloy corrosion. Prog. Mater Sci. 89, 92–193 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  6. T. Zhang, G. Meng, Y. Shao et al., Corrosion of hot extrusion AZ91 magnesium alloy. Part II: effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy. Corrosion Sci. 53, 2934–2942 (2011). https://doi.org/10.1016/j.corsci.2011.05.035

    Article  CAS  Google Scholar 

  7. B. Mordike, T. Ebert, Magnesium: properties—applications—potential. Mater. Sci. Eng., A 302, 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  8. E. Hajjari, M. Divandari, S. Razavi et al., Microstructure characteristics and mechanical properties of Al 413/Mg joint in compound casting process. Metall. Mater. Trans. A. 43, 4667–4677 (2012). https://doi.org/10.1007/s11661-012-1296-0

    Article  CAS  Google Scholar 

  9. M. Paramsothy, N. Srikanth, M. Gupta, Solidification processed Mg/Al bimetal macrocomposite: Microstructure and mechanical properties. J. Alloy. Compd. 461, 200–208 (2008). https://doi.org/10.1016/j.jallcom.2007.07.050

    Article  CAS  Google Scholar 

  10. J. Shangguan, J. Zhao, Y. Shi et al., Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00612-9

    Article  Google Scholar 

  11. S. Li, Z. Zheng, L. Chang et al., A two-step bonding process for preparing 6061/AZ31 bimetal assisted with liquid molten zinc interlayer: the process and microstructure. J. Adhesion Sci. Technol. (2021). https://doi.org/10.1080/01694243.2021.1999713

    Article  Google Scholar 

  12. P. Venkateswaran, A.P. Reynolds, Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys. Mater. Sci. Eng., A 545, 26–37 (2012). https://doi.org/10.1016/j.msea.2012.02.069

    Article  CAS  Google Scholar 

  13. I. Bhamji, M. Preuss, R. Moat et al., Linear friction welding of aluminium to magnesium. Sci. Technol. Weld. Joining 17, 368–374 (2012). https://doi.org/10.1179/1362171812Y.0000000017

    Article  CAS  Google Scholar 

  14. J. Bae, A.P. Rao, K. Kim et al., Cladding of Mg alloy with Al by twin-roll casting. Scripta Mater. 64, 836–839 (2011). https://doi.org/10.1016/j.scriptamat.2011.01.013

    Article  CAS  Google Scholar 

  15. K. Papis, J.F. Löffler, P.J. Uggowitzer, Interface formation between liquid and solid Mg alloys—an approach to continuously metallurgic joining of magnesium parts. Mater. Sci. Eng., A 527, 2274–2279 (2010). https://doi.org/10.1016/j.msea.2009.11.066

    Article  CAS  Google Scholar 

  16. Y. Chen, K. Nakata, Friction stir lap joining aluminum and magnesium alloys. Scripta Mater. 58, 433–436 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.033

    Article  CAS  Google Scholar 

  17. L. Liu, X. Liu, S. Liu, Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scripta Mater. 55, 383–386 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.025

    Article  CAS  Google Scholar 

  18. L.-M. Liu, H.-Y. Wang, Z.-D. Zhang, The analysis of laser weld bonding of Al alloy to Mg alloy. Scripta Mater. 56, 473–476 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.034

    Article  CAS  Google Scholar 

  19. G.R. Joshi, V.J. Badheka, Processing of bimetallic steel-copper joint by laser beam welding. Mater. Manuf. Processes 34, 1232–1242 (2019). https://doi.org/10.1080/10426914.2019.1628262

    Article  CAS  Google Scholar 

  20. F. Li, Z. Wei, X. Li et al., Investigation on the coupling interaction in electron beam welded Al–Cu bimetallic sheet. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 235, 640–652 (2021). https://doi.org/10.1177/1464420720976696

    Article  CAS  Google Scholar 

  21. J. Wang, Y. Li, W. Huang, Interface microstructure and diffusion kinetics in diffusion bonded Mg/Al joint. React. Kinet. Catal. Lett. 95, 71–79 (2008). https://doi.org/10.1007/s11144-008-5259-9

    Article  CAS  Google Scholar 

  22. M. Mofid, A. Abdollah-Zadeh, F.M. Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater. Des. 1980–2015(36), 161–167 (2012). https://doi.org/10.1016/j.matdes.2011.11.004

    Article  CAS  Google Scholar 

  23. B. Li, Y. Shen, L. Luo et al., Fabrication and anti-oxidation properties of Al/Ti-6Al-4V bimetallic clad-sheet by multi-pass friction stir welding. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229, 1078–1082 (2015). https://doi.org/10.1177/0954405414535583

    Article  CAS  Google Scholar 

  24. D. Dietrich, D. Nickel, M. Krause et al., Formation of intermetallic phases in diffusion-welded joints of aluminium and magnesium alloys. J. Mater. Sci. 46, 357–364 (2011). https://doi.org/10.1007/s10853-010-4841-5

    Article  CAS  Google Scholar 

  25. M.R. Mohammad Aliha, Y. Fotouhi, F. Berto, Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232, 2192–2200 (2018). https://doi.org/10.1177/0954405416688935

    Article  CAS  Google Scholar 

  26. T.-F. Kong, L.-C. Chan, T.-C. Lee, Weld diffusion analysis of forming bimetallic components using statistical experimental methods. Mater. Manuf. Process. 24, 422–430 (2009). https://doi.org/10.1080/10426910802714316

    Article  CAS  Google Scholar 

  27. E. Hajjari, M. Divandari, S. Razavi et al., Dissimilar joining of Al/Mg light metals by compound casting process. J. Mater. Sci. 46, 6491–6499 (2011). https://doi.org/10.1007/s10853-011-5595-4

    Article  CAS  Google Scholar 

  28. M. Akbarifar, M. Divandari, Study of Al/cast iron interface and graphite behavior. J. Mining. Metall. B Metall. 53, 53–59 (2017). https://doi.org/10.2298/JMMB160108027A

    Article  CAS  Google Scholar 

  29. M. Akbarifar, M. Divandari, On the interfacial characteristics of compound cast Al/brass bimetals. Int. J. Metalcast. 11, 506–512 (2017). https://doi.org/10.1007/s40962-016-0101-z

    Article  Google Scholar 

  30. G. Zare, M. Divandari, H. Arabi, Investigation on interface of Al/Cu couples in compound casting. Mater. Sci. Technol. 29, 190–196 (2013). https://doi.org/10.1179/1743284712Y.0000000096

    Article  CAS  Google Scholar 

  31. A.M. Tavakoli, B. Nami, M. Malekan et al., Influences of coating type on microstructure and strength of aluminum-steel bimetal composite interface. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00630-7

    Article  Google Scholar 

  32. S. Han, H. Huh, Evaluation of a cast-joining process of dual-metal crankshafts with nodular cast iron and forged steel for medium speed diesel engines. Int. J. Adv. Manuf. Technol. 63, 319–327 (2012). https://doi.org/10.1007/s00170-012-3909-6

    Article  Google Scholar 

  33. W. Jiang, F. Guan, G. Li et al., Processing of Al/Cu bimetal via a novel compound casting method. Mater. Manuf. Processes 34, 1016–1025 (2019). https://doi.org/10.1080/10426914.2019.1615084

    Article  CAS  Google Scholar 

  34. S. Emami, M. Divandari, H. Arabi et al., Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding. J. Mater. Eng. Perform. 22, 123–130 (2013). https://doi.org/10.1007/s11665-012-0243-y

    Article  CAS  Google Scholar 

  35. G. Xu, A.A. Luo, Y. Chen et al., Interfacial phenomena in magnesium/aluminum bi-metallic castings. Mater. Sci. Eng., A 595, 154–158 (2014). https://doi.org/10.1016/j.msea.2013.11.093

    Article  CAS  Google Scholar 

  36. Q. Hu, Z. Jiang, W. Jiang et al., Interface characteristics of Mg/Al bimetal produced by a novel liquid-liquid compound casting process with an Al interlayer. Int. J. Adv. Manuf. Technol. 101, 1125–1132 (2019). https://doi.org/10.1007/s00170-018-2990-x

    Article  Google Scholar 

  37. M. Gholami, M. Divandari, Interfacial phases and defects characteristics of Al/Cu-Zn bimetal produced via centrifugal casting process. Iran. J. Mater. Sci. Eng. 15, 52–61 (2018). https://doi.org/10.22068/ijmse.15.4.52

    Article  Google Scholar 

  38. Hoeschl, M., Wagener, W.,Wolf, J. BMW's magnesium-aluminium composite crankcase, state-of-the-art light metal casting and manufacturing. SAE Technical Paper, 2006. Doi: https://doi.org/10.4271/2006-01-0069

  39. K. Matsugi, M. Konishi, O. Yanagisawa et al., Erratum to “Joining of spheroidal graphite cast iron to stainless steel by impact-electric current discharge joining.” J. Mater. Process. Technol. 166, 313–320 (2005). https://doi.org/10.1016/j.jmatprotec.2004.10.006

    Article  Google Scholar 

  40. H. Zhang, Y. Chen, A.A. Luo, Improved interfacial bonding in magnesium/aluminum overcasting systems by aluminum surface treatments. Metall. and Mater. Trans. B. 45, 2495–2503 (2014). https://doi.org/10.1007/s11663-014-0140-x

    Article  CAS  Google Scholar 

  41. T. Noguchi, N. Horikawa, H. Nagate et al., Application of flow and solidification simulation in cast-in insertion processing. Int. J. Cast Met. Res. 18, 214–220 (2005). https://doi.org/10.1179/136404605225022955

    Article  Google Scholar 

  42. Smith, W. F. Structure and properties of engineering alloys. McGraw-Hill Book Co., xiv+ 512, 23 x 16 cm, illustrated(16. 95) (1981).

  43. Avedesian, M. M.,Baker, H. ASM specialty handbook: magnesium and magnesium alloys; ASM international, 1999.

  44. Davis, J. R. Aluminum and aluminum alloys; ASM international, 1993.

  45. F. Calvo, A. Ureng, J.G. De Salazar et al., Special features of the formation of the diffusion bonded joints between copper and aluminium. J. Mater. Sci. 23, 2273–2280 (1988). https://doi.org/10.1007/BF01115800

    Article  CAS  Google Scholar 

  46. M. Akbarifar, M. Divandari, S.M.A. Boutorabi et al., Characteristic investigation of the as-received samples: nano-oxides in Al–5Mg–Be Melt. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00773-1

    Article  Google Scholar 

  47. S. Feliu Jr., C. Maffiotte, A. Samaniego et al., Effect of naturally formed oxide films and other variables in the early stages of Mg-alloy corrosion in NaCl solution. Electrochim. Acta 56, 4554–4565 (2011). https://doi.org/10.1016/j.electacta.2011.02.077

    Article  CAS  Google Scholar 

  48. R.K. Tayal, S. Kumar, V. Singh et al., Experimental investigation and evaluation of joint strength of A356/Mg bimetallic fabricated using compound casting process. Int. J. Metalcast. 13, 686–699 (2019). https://doi.org/10.1007/s40962-018-0288-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Sarvari.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvari, M., Ghaemi Khiavi, S., Divandari, M. et al. Dissimilar Joining of Al/Mg Light Metals by Centrifugal Compound Casting Process. Inter Metalcast 17, 998–1007 (2023). https://doi.org/10.1007/s40962-022-00832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00832-7

Keywords

Navigation