Skip to main content
Log in

Effect of Ultrasonic Melt Treatment on Solidification Behavior of Al7SiMg Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present work, the effect of Al–5Ti–1B master alloy or ultrasonic melt treatment on α-Al nucleation mechanism and dendrite coherency point mechanisms of the Al–Si–Mg alloy have been studied through the thermal cooling curve and microstructural analyses. Results show that these refinement methods increased the nucleation temperature and reduced recalescence undercooling for the Al7SiMg alloy. For a processing temperature of 700 ºC, the ultrasonic melt treatment increased the difference between the liquidus and coherency temperatures (\(T_{N} - T_{DCP}\)) to 10 ºC. The \(T_{N} - T_{DCP}\) was further improved to 14 ºC when the same melt treatment was applied at 640 ºC. Ultrasonic melt treatment increased the solid fraction at coherency by 27% and 51% at 700 ºC and 640 ºC melt temperature, respectively. Ultrasonic melt treatment displayed the highest efficiency at lower temperatures on both refinement and dendrite coherency by promoting a more refined microstructure for the Al–Si–Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. T. Haga, S. Imamura, H. Fuse, Fluidity investigation of pure Al and Al–Si alloys. Materials (Basel, Switzerland) 14(18), 5372 (2021). https://doi.org/10.3390/ma14185372

    Article  CAS  Google Scholar 

  2. J. Lazaro-Nebreda, J.B. Patel, Z. Fan, Improved degassing efficiency and mechanical properties of A356 aluminium alloy castings by high shear melt conditioning (HSMC) technology. J. Mater. Process. Technol. 294(6), 117146 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117146

    Article  CAS  Google Scholar 

  3. D. Brabazon, D.J. Browne, A.J. Carr, Mechanical stir casting of aluminium alloys from the mushy state: process, microstructure and mechanical properties. Mater. Sci. Eng. A 326(2), 370–381 (2002). https://doi.org/10.1016/S0921-5093(01)01832-9

    Article  Google Scholar 

  4. Z. Liu, W.-M. Mao, X.-M. Liu, Characterization on morphology evolution of primary phase in semisolid A356 under slightly electromagnetic stirring. Trans. Nonferrous Met. Soc. China 20(5), s805–s810 (2010). https://doi.org/10.1016/S1003-6326(10)60585-7

    Article  Google Scholar 

  5. Y. Li, Y. Jiang, B. Hu, Q. Li, Novel Al–Ti–Nb–B grain refiners with superior efficiency for Al–Si alloys. Scripta Mater. 187(1), 262–267 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.037

    Article  CAS  Google Scholar 

  6. Y.H. Zhang et al., Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al–V–B master alloy. J Alloys Compd 812, 152022 (2020). https://doi.org/10.1016/j.jallcom.2019.152022

    Article  CAS  Google Scholar 

  7. N. Balasubramani, G. Wang, D.H. StJohn, M.S. Dargusch, Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques. J. Mater. Sci. Technol. 65(1), 38–53 (2021). https://doi.org/10.1016/j.jmst.2020.04.080

    Article  CAS  Google Scholar 

  8. I.V. Gomes, H. Puga, J.L. Alves, Ultrasonic treatment as the route for grain refinement of Mg–Al alloys: a systematic review. Metals 11(10), 1529 (2021). https://doi.org/10.3390/met11101529

    Article  CAS  Google Scholar 

  9. H. Puga, J. Barbosa, N.Q. Tuan, F. Silva, Effect of ultrasonic degassing on performance of Al-based components. Trans. Nonferrous Met. Soc. China 24(11), 3459–3464 (2014). https://doi.org/10.1016/S1003-6326(14)63489-0

    Article  CAS  Google Scholar 

  10. H.R. Kotadia, M. Qian, D.G. Eskin, A. Das, On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification. Mater. Des. 132, 266–274 (2017). https://doi.org/10.1016/j.matdes.2017.06.065

    Article  CAS  Google Scholar 

  11. S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al–Si alloys. J Mater Sci 43(9), 3009–3027 (2008). https://doi.org/10.1007/s10853-008-2505-5

    Article  CAS  Google Scholar 

  12. F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, M. Mounib, A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater. 116, 354–363 (2016). https://doi.org/10.1016/j.actamat.2016.06.056

    Article  CAS  Google Scholar 

  13. A. Priyadarshi et al., In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water. Ultrason. Sonochem. 80, 105820 (2021). https://doi.org/10.1016/j.ultsonch.2021.105820

    Article  CAS  Google Scholar 

  14. T.H. Ludwig, P.L. Schaffer, L. Arnberg, Influence of some trace elements on solidification path and microstructure of Al–Si foundry alloys. Metall. Mater. Trans. A 44(8), 3783–3796 (2013). https://doi.org/10.1007/s11661-013-1694-y

    Article  CAS  Google Scholar 

  15. D.M. Stefanescu, Thermal analysis—theory and applications in metalcasting. Int. Metalcast. 9(1), 7–22 (2015). https://doi.org/10.1007/BF03355598

    Article  Google Scholar 

  16. J. Nampoothiri, I. Balasundar, B. Raj, B.S. Murty, K.R. Ravi, Porosity alleviation and mechanical property improvement of strontium modified A356 alloy by ultrasonic treatment. Mater. Sci. Eng. A 724, 586–593 (2018). https://doi.org/10.1016/j.msea.2018.03.069

    Article  CAS  Google Scholar 

  17. S.D. McDonald, K. Nogita, A.K. Dahle, Eutectic nucleation in Al–Si alloys. Acta Mater. 52(14), 4273–4280 (2004). https://doi.org/10.1016/j.actamat.2004.05.043

    Article  CAS  Google Scholar 

  18. D. G. Ibarra, Control of Grain Refinement of AI-Si Alloys by Thermal Analysis, Ph.D., McGill University, McGill University, 1999. [Online]. Available: https://escholarship.mcgill.ca/concern/theses/2801pj065

  19. G. Mao, G. Tong, W. Gao, S. Liu, L. Zhong, The poisoning effect of Sc or Zr in grain refinement of Al–Si–Mg alloy with Al–Ti–B. Mater. Lett. 302(13), 130428 (2021). https://doi.org/10.1016/j.matlet.2021.130428

    Article  CAS  Google Scholar 

  20. C. Limmaneevichitr, W. Eidhed, Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners. Mater. Sci. Eng. A 349(1–2), 197–206 (2003). https://doi.org/10.1016/S0921-5093(02)00751-7

    Article  Google Scholar 

  21. L. Bäckerud, L. Arnberg, E. Król, J. Tamminen, G. Chai, Solidification Characteristics of Aluminum Alloys. Oslo, Normay: Skanaluminium, 1986.

  22. H.R. Kotadia, A. Das, Modification of solidification microstructure in hypo- and hyper-eutectic Al–Si alloys under high-intensity ultrasonic irradiation. J. Alloy. Compd. 620, 1–4 (2015). https://doi.org/10.1016/j.jallcom.2014.09.089

    Article  CAS  Google Scholar 

  23. H.R. Kotadia, M. Qian, A. Das, Microstructural modification of recycled aluminium alloys by high-intensity ultrasonication: Observations from custom Al–2Si–2Mg–1.2Fe–(0.5,1.0)Mn alloys. J. Alloy. Compd. 823, 153833 (2020). https://doi.org/10.1016/j.jallcom.2020.153833

    Article  CAS  Google Scholar 

  24. R. Chávez-Zamarripa, J.A. Ramos-Salas, J. Talamantes-Silva, S. Valtierra, R. Colás, Determination of the dendrite coherency point during solidification by means of thermal diffusivity analysis. Metall. Mater. Trans A 38(8), 1875–1879 (2007). https://doi.org/10.1007/s11661-007-9212-8

    Article  CAS  Google Scholar 

  25. K.G. Upadhya, D. Stefanescu, K. Lieu, D. Yeger, Computer-aided cooling curve analysis, principles and applications in metal casting. in Transactions of the American Foundrymen's Society, 1989, pp. 61–66.

  26. A.A. Canales, J. Talamantes-Silva, D. Gloria, S. Valtierra, R. Colás, Thermal analysis during solidification of cast Al–Si alloys. Thermochim. Acta 510(1–2), 82–87 (2010). https://doi.org/10.1016/j.tca.2010.06.026

    Article  CAS  Google Scholar 

  27. E. Fras, W. Kapturkiewicz, A. Burbelko, H. Lopez, A new concept in thermal analysis of castings. AFS Trans 101, 505–511 (1993)

    CAS  Google Scholar 

  28. J. Grilo, H. Puga, V.H. Carneiro, S.D. Tohidi, F.V. Barbosa, J.C. Teixeira, Effect of hybrid ultrasonic and mechanical stirring on the distribution of m-SiCp in A356 alloy. Metals 10(5), 610 (2020). https://doi.org/10.3390/met10050610

    Article  CAS  Google Scholar 

  29. J. Grilo, H. Puga, J.C.S. Fernandes, Influence of melt treatment of AZ91D alloy on phase morphology and corrosion behaviour in Hank’s solution. Corros. Eng. Sci. Technol. 56(6), 504–512 (2021). https://doi.org/10.1080/1478422X.2021.1916688

    Article  CAS  Google Scholar 

  30. D. Dispinar, Determination of Metal Quality of Aluminium and its Alloys, Ph.D., University of Birmingham, 2005. [Online]. Available: https://etheses.bham.ac.uk/id/eprint/10/

  31. J. Campbell, Origin of Porosity in Cast Metals, Ph.D., University of Birmingham, 1967. [Online]. Available: http://etheses.bham.ac.uk/id/eprint/6892

  32. J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Amsterdam: Elsevier, 2015. [Online]. Available: http://www.sciencedirect.com/science/book/9780444635099

  33. A. Samuel, Y. Zedan, H. Doty, V. Songmene, F.H. Samuel, A review study on the main sources of porosity in Al–Si cast alloys. Adv. Mater. Sci. Eng. 2021, 1–16 (2021). https://doi.org/10.1155/2021/1921603

    Article  CAS  Google Scholar 

  34. H. Puga, J. Barbosa, E. Seabra, S. Ribeiro, M. Prokic, The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy. Mater. Lett. 63(9–10), 806–808 (2009). https://doi.org/10.1016/j.matlet.2009.01.009

    Article  CAS  Google Scholar 

  35. H. Puga, J. Barbosa, E. Seabra, S. J. L. Ribeiro, M. Prokić, New Trends in Aluminium Degassing: A Comparative Study,” in 2009. [Online]. Available: http://mastersonics.com/documents/mmm_applications/ultrasonic_metallurgy/new%20trends%20in%20aluminium%20degassing%20-%20a%20comparative%20study.pdf

  36. D. Dhaneswara, J. Fajar Fatriansyah, R. Ramadhan, A. Ashari, The effect of melting temperature aluminum metal casting using mixed degasser based sodium fluoride and sodium nitrate. MATEC Web Conf. 269(4), 7001 (2019). https://doi.org/10.1051/matecconf/201926907001

    Article  CAS  Google Scholar 

  37. G.I. Eskin, Cavitation mechanism of ultrasonic melt degassing. Ultrason. Sonochem. 2(2), S137–S141 (1995). https://doi.org/10.1016/1350-4177(95)00020-7

    Article  CAS  Google Scholar 

  38. J. Campbell, Pore nucleation in solidifying metals, Iron and Steel Institute, pp. 19–26, 1968.

  39. D. Emadi, L.V. Whiting, M. Djurdjevic, W.T. Kierkus, J. Sokolowski, Comparison of Newtonian and Fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminum alloys. MJoM 10(2), 91–106 (2004). https://doi.org/10.30544/379

    Article  Google Scholar 

  40. W. Khalifa, Y. Tsunekawa, M. Okumiya, Effect of ultrasonic melt treatment on microstructure of A356 aluminium cast alloys. Int. J. Cast Met. Res. 21(1–4), 129–134 (2008). https://doi.org/10.1179/136404608X361819

    Article  CAS  Google Scholar 

  41. C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements: a comprehensive review. J. Phys. Chem. Reference Data 3(1), 1–796 (1974)

    Google Scholar 

  42. M. Malekan, S.G. Shabestari, Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall. Mater. Trans. A 40(13), 3196–3203 (2009). https://doi.org/10.1007/s11661-009-9978-y

    Article  CAS  Google Scholar 

  43. D. Emadi, L.V. Whiting, Determination of solidification characteristics of Al–Si alloys by thermal analysis. AFS Trans. 110, 285–296 (2002)

    CAS  Google Scholar 

  44. J.O. Barlow, D. Stefanescu, Computer-aided cooling curve analysis revisited. AFS Trans. 105, 349–354 (1997)

    CAS  Google Scholar 

  45. D. Emadi, L.V. Whiting, S. Nafisi, R. Ghomashchi, Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim 81(1), 235–242 (2005). https://doi.org/10.1007/s10973-005-0772-9

    Article  CAS  Google Scholar 

  46. L. Moraru, Fourier thermal analysis of solidification kinetics in molten aluminium and in presence of ultrasonic field, 2000, doi:https://doi.org/10.1023/A:1022852600970.

  47. S.V. Komarov, M. Kuwabara, O.V. Abramov, High power ultrasonics in pyrometallurgy: current status and recent development. ISIJ Int. 45(12), 1765–1782 (2005). https://doi.org/10.2355/isijinternational.45.1765

    Article  CAS  Google Scholar 

  48. A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al–Si alloy. Mater. Chem. Phys. 125(3), 853–859 (2011). https://doi.org/10.1016/j.matchemphys.2010.09.035

    Article  CAS  Google Scholar 

  49. D.G. McCartney, Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 34(1), 247–260 (1989). https://doi.org/10.1179/imr.1989.34.1.247

    Article  CAS  Google Scholar 

  50. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts. Australia: Gordon and Breach Science, 1998.

  51. G.I. Eskin, Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason. Sonochem. 8(3), 319–325 (2001). https://doi.org/10.1016/S1350-4177(00)00074-2

    Article  CAS  Google Scholar 

  52. I.G. Brodova, P.S. Popel, G.I. Eskin, Liquid Metal Processing: CRC Press, 2001.

  53. B. Wang et al., Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound. Acta Mater. 144, 505–515 (2018). https://doi.org/10.1016/j.actamat.2017.10.067

    Article  CAS  Google Scholar 

  54. N. Arab, E. Nazaryan, S. Habibi, Evaluation of nucleation in A-356 aluminum alloy by thermal analysis. Russ. J. Non-ferrous Metals 51(1), 79–84 (2010). https://doi.org/10.3103/S1067821210010153

    Article  Google Scholar 

  55. B. Golbahar, E. Samuel, A.M. Samuel, H.W. Doty, F.H. Samuel, On thermal analysis, macrostructure and microstructure of grain refined Al–Si–Mg cast alloys: role of Sr addition. Int. J. Cast Met. Res. 27(5), 257–266 (2014). https://doi.org/10.1179/1743133614Y.0000000109

    Article  CAS  Google Scholar 

  56. S. Nafisi, R. Ghomashchi, Grain refining of conventional and semi-solid A356 Al–Si alloy. J. Mater. Process. Technol. 174(1–3), 371–383 (2006). https://doi.org/10.1016/j.jmatprotec.2006.02.012

    Article  CAS  Google Scholar 

  57. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 48(11), 2823–2835 (2000). https://doi.org/10.1016/S1359-6454(00)00094-X

    Article  CAS  Google Scholar 

  58. M.C. Flemings, Behavior of metal alloys in the semisolid state. MTA 22(5), 957–981 (1991). https://doi.org/10.1007/BF02661090

    Article  Google Scholar 

  59. A. Zyska, Z. Konopka, M. Łągiewka, P. Kordas, ThermoCalc application for the assessment of binary alloys non-equilibrium solidification. Arch. Foundry Eng. 17(1), 163–168 (2017). https://doi.org/10.1515/afe-2017-0030

    Article  CAS  Google Scholar 

  60. O. Fornaro, H.A. Palacio, Study of dilute Al–Cu solidification by cooling curve analysis. J Mater Sci 44(16), 4342–4347 (2009). https://doi.org/10.1007/s10853-009-3648-8

    Article  CAS  Google Scholar 

  61. R.W. Cahn, P. Haasen, Physical Metallurgy, 4th edn. (North-Holland, Amsterdam, 1996)

    Google Scholar 

  62. L.A. Dobrzański, R. Maniara, J.H. Sokolowski, The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy. Arch. Mater. Sci. Eng. 28, 105–112 (2007)

    Google Scholar 

  63. L. Arnberg, G. Chai, L. Backerud, Determination of dendritic coherency in solidifying melts by rheological measurements. Mater. Sci. Eng. A 173(1–2), 101–103 (1993). https://doi.org/10.1016/0921-5093(93)90195-k

    Article  Google Scholar 

  64. R. Xu, H. Zheng, F. Guo, Y. Zhang, S. Ding, X. Tian, Effect of silicon concentration on the dendrite coherency point in Al–Si binary alloys. Trans Indian Inst Met 67(1), 95–100 (2014). https://doi.org/10.1007/s12666-013-0320-4

    Article  CAS  Google Scholar 

  65. N.L.M. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Dendrite coherency of Al–Si–Cu alloys. Metall. Mater. Trans A 32(1), 147–155 (2001). https://doi.org/10.1007/s11661-001-0110-1

    Article  Google Scholar 

Download references

Funding

This work was supported by PTDC/EMEEME/30967/2017 and NORTE-0145-FEDER-030967, co-financed by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Portugal 2020, and by the Fundação para a Ciência e a Tecnologia—FCT I.P. national funds. Also, this work was supported by Portuguese FCT, under the reference of research doctoral Grant 2020.08564.BD.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualzsation, J.G., V.H.C. and H.P.; methodology, J.G.; validation, H.P., V.H.C. and J.C.T.; formal analysis, J.G.; investigation, J.G.; resources, J.C.T.; data curation, J.G.; writing—original draft preparation, J.G., V.H.C. and H.P.; writing—review and editing, J.G., V.H.C., H.P. and J.C.T.; visualization, J.G.; supervision, H.P., V.H.C. and J.C.T.; project administration, H.P.; funding acquisition, H.P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to José Grilo.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilo, J., Carneiro, V.H., Teixeira, J.C. et al. Effect of Ultrasonic Melt Treatment on Solidification Behavior of Al7SiMg Alloy. Inter Metalcast 17, 1034–1048 (2023). https://doi.org/10.1007/s40962-022-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00829-2

Keywords

Navigation