Skip to main content
Log in

A Comparative Assessment on Microstructure, Mechanical and Tribological Behaviour of Light Aluminium–Trialuminide Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Al-Mg alloy consisting of Mg is an important lightweight material and could be considered as a matrix material for fabricating the composites. In the present study, different trialuminides of Zr and Ti have been prepared separately in the lightweight Al alloy via direct melt reaction route, and comparative studies have been performed in terms of microstructure, mechanical and tribological properties. The results indicate that different trialuminides are successfully generated in the Al alloy with uniform distribution and refined the grains of α-aluminium with different extents. The trialuminide improves the strength, ductility, hardness and anti-wear life of the Al alloy, but the improvement is more in composite with trialuminide of Ti than other. Other parameters such as surface roughness and maximum wear depth are also correlated with wear test parameters and materials. They increase with sliding distance and applied load, while with trialuminide, they decrease. However, the minimum value of surface roughness and wear depth is observed in the composite with trialuminide of Ti. This study provides an insight about the selection of suitable trialuminide as reinforcement for the Al-Mg alloy to give away an appropriate product for automobile and aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Rooy, E.L. Introduction to Aluminum and Aluminum Alloys in ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, Vol. 2, ASM Handbook, ASM International, 1990.

  2. R. Gecu, S.H. Atapek, A. Karaaslan, Influence of preform preheating on dry sliding wear behavior of 304 stainless steel reinforced A356 aluminum matrix composite produced by melt infiltration casting. Tribol Int 115, 608–618 (2017)

    Article  CAS  Google Scholar 

  3. J.D.R. Selvam, I. Dinaharan, S.V. Philip, P.M. Mashinini, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites. J Alloy Compd 740, 529–535 (2017). https://doi.org/10.1016/j.jallcom.2018.01.016

    Article  CAS  Google Scholar 

  4. R.N. Rao, S. Das, D.P. Mondal, G. Dixit, S.L.T. Devi, Dry sliding wear maps for AA7010 (Al–Zn–Mg–Cu) aluminium matrix composite. Tribol Int 60, 77–82 (2013). https://doi.org/10.1016/j.triboint.2012.10.007

    Article  CAS  Google Scholar 

  5. G. Huang, J. Wu, W. Hou, Y. Shen, Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing. Mat Sci Eng. A 734, 353–363 (2018). https://doi.org/10.1016/j.msea.2018.08.015

    Article  CAS  Google Scholar 

  6. N. Muralidharan, K. Chockalingam, I. Dinaharan, K. Kalaiselvan, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J Alloy Compd 735, 2167–2174 (2018). https://doi.org/10.1016/j.jallcom.2017.11.371

    Article  CAS  Google Scholar 

  7. M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2013). https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  8. D.M. Shinde, P. Sahoo, Nanoindentation, scratch, and corrosion studies of aluminum composites reinforced with submicron B4C particles. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00692-7

    Article  Google Scholar 

  9. G. Kumaresan, B. Arul Kumar, Investigations on mechanical properties of micro- and nano-particulates (Al2O3/B4C) reinforced in Al 7075 matrix composite. Inter Metalcast (2022). https://doi.org/10.1007/s40962-021-00741-1

    Article  Google Scholar 

  10. N. Kumar, S.K. Singh, G. Gautam, A.K. Padap, A. Mohan, S. Mohan, Synthesis and statistical modelling of dry sliding wear of Al 8011/6 vol% AlB2 in situ composite. Mater Res Express 4, 1–11 (2017). https://doi.org/10.1088/2053-1591/aa8dbe

    Article  CAS  Google Scholar 

  11. N. Kumar, G. Gautam, A. Mohan, S. Mohan, High temperature tensile and strain hardening behaviour of AA5052/9 vol%ZrB2 insitu composite. Mater Res 21, 1–7 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0860

    Article  Google Scholar 

  12. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, C.Q. Wang, In situ (Al2O3+Al3Zr)np/Al nanocomposites synthesized by magneto-chemical melt reaction. Compos. Sci. Technol. 68, 1463–1470 (2008). https://doi.org/10.1016/j.compscitech.2007.10.036

    Article  CAS  Google Scholar 

  13. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Inter Metalcast 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  14. G.R. Li, Y.T. Zhao, Q.X. Dai, X.N. Cheng, H.M. Wang, G. Chen, Fabrication and properties of in situ synthesized particles reinforced aluminum matrix composites of Al–Zr–O–B system. J Mater Sci 42, 5442–5447 (2007). https://doi.org/10.1007/s10853-006-0790-4

    Article  CAS  Google Scholar 

  15. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Inter Metalcast 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  16. G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, High-temperature tensile and tribological behavior of hybrid (ZrB2+Al3Zr)/AA5052 in situ composite. Metall Mater Trans A 47A, 4709–4720 (2016). https://doi.org/10.1007/s11661-016-3635-z

    Article  CAS  Google Scholar 

  17. S. Mohan, G. Gautam, N. Kumar, R.K. Gautam, A. Mohan, A.K. Jaiswal, Dry sliding wear behavior of Al-SiO2 composites. Compos. Interface 23, 493–502 (2016). https://doi.org/10.1080/09276440.2016.1149363

    Article  CAS  Google Scholar 

  18. G. Gautam, A. Mohan, Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2+Al3Zr)/AA5052 insitu composites. J Alloy Compd 649, 174–183 (2015). https://doi.org/10.1016/j.jallcom.2015.07.096

    Article  CAS  Google Scholar 

  19. R.A. Varin, Intermetallic-reinforced light-metal matrix in-situ composites. Metall Mater Trans A 33A, 193–201 (2002). https://doi.org/10.1007/s11661-002-0018-4

    Article  CAS  Google Scholar 

  20. D. Roy, S. Ghosh, A. Basumallick, B. Basu, Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing. J Alloy Compd 436, 107–111 (2007). https://doi.org/10.1016/j.jallcom.2006.07.017

    Article  CAS  Google Scholar 

  21. R. Gupta, G.P. Chaudhari, B.S.S. Daniel, Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition. Compos Part B Eng 140, 27–34 (2018). https://doi.org/10.1016/j.compositesb.2017.12.005

    Article  CAS  Google Scholar 

  22. G. Gautam, A. Mohan, Wear and friction of AA5052-Al3Zr in situ composites synthesized by direct melt reaction. J Tribol-T ASME 138, 021602-1-021602–12 (2016). https://doi.org/10.1115/1.4031401

    Article  CAS  Google Scholar 

  23. G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, Synthesis and characterization of tri-aluminide in situ composites. J Mater Sci 51, 8055–8074 (2016). https://doi.org/10.1007/s10853-016-0076-4

    Article  CAS  Google Scholar 

  24. A. Mohan, G. Gautam, N. Kumar, S. Mohan, R.K. Gautam, Synthesis and tribological properties of AA5052 Base insitu composites. Compos Interface 23, 503–518 (2016). https://doi.org/10.1080/09276440.2016.1155386

    Article  CAS  Google Scholar 

  25. G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, Strengthening mechanisms of (Al3Zrmp+ZrB2np)/AA5052 hybrid composites. J Compos Mater 50, 4123–4133 (2016). https://doi.org/10.1177/0021998316631811

    Article  CAS  Google Scholar 

  26. M. Gautam, G. Gautam, A. Mohan, S. Mohan, Enhancing the performance of aluminium by chromium oxide. Mater Res Express 6, 1–11 (2019). https://doi.org/10.1088/2053-1591/ab5818

    Article  CAS  Google Scholar 

  27. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan, S. Mohan, A study on mechanical properties and strengthening mechanisms of AA5052/ZrB2 insitu composite. J Eng Mater-T ASME 139, 0110021–0110028 (2017). https://doi.org/10.1115/1.4034692

    Article  CAS  Google Scholar 

  28. S.K. Chourasiya, G. Gautam, Enhancing the microstructure and tribological performance of spray formed Al alloy by cryorolling. SILICON 13, 2857–2868 (2021). https://doi.org/10.1007/s12633-020-00627-7

    Article  CAS  Google Scholar 

  29. S.K. Chourasiya, G. Gautam, D. Singh, Mechanical and tribological behavior of warm rolled Al-6Si-3Graphite self lubricating composite synthesized by spray forming process. SILICON 12, 831–842 (2020). https://doi.org/10.1007/s12633-019-00175-9

    Article  CAS  Google Scholar 

  30. K. Tiwari, G. Gautam, N. Kumar, A. Mohan, S. Mohan, Effect of primary silicon refinement on mechanical and wear properties of a hypereutectic Al-Si Alloy. SILICON 10, 2227–2239 (2018). https://doi.org/10.1007/s12633-017-9755-2

    Article  CAS  Google Scholar 

  31. G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, Tribology and surface topography of Tri-aluminide reinforced composites. Tribol Int 97, 49–58 (2016). https://doi.org/10.1016/j.triboint.2016.01.014

    Article  CAS  Google Scholar 

  32. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan, S. Mohan, Wear, Friction and profilometer studies of insitu AA5052/ZrB2 composites. Tribol. Int. 97, 313–326 (2016). https://doi.org/10.1016/j.triboint.2016.01.036

    Article  CAS  Google Scholar 

  33. S.K. Chourasiya, G. Gautam, Spray forming technique for aluminium matrix materials: a review. Mater Today 44, 561–565 (2021). https://doi.org/10.1016/j.matpr.2020.10.343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges DST, India, for financial support under SERB N-PDF fellowship scheme reference PDF/2016/002483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, G., Kumar, N., Mohan, A. et al. A Comparative Assessment on Microstructure, Mechanical and Tribological Behaviour of Light Aluminium–Trialuminide Composites. Inter Metalcast 17, 813–828 (2023). https://doi.org/10.1007/s40962-022-00810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00810-z

Keywords

Navigation