Skip to main content

Advertisement

Log in

Influence of Speed and Sliding Distance on the Tribological Performance of Submicron Particulate Reinforced Al-12Si /1.5 Wt% B4C Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The paper reports wear and friction performance of Al-12Si aluminum alloy reinforced with 1.5 wt% submicron boron carbide (B4C) particles. Composite material is fabricated by ultrasonic stir casting process. Microstructural examination is carried out using optical microscopy and field emission scanning electron microscopy (FESEM). Incorporation and agglomeration-free dispersion of B4C particles is detected in the aluminum matrix. Pin-on-disc tribotester is used to evaluate tribological performance of fabricated composite and base alloy under room temperature dry conditions. Nominal contact pressure of 0.707 MPa is applied against EN31 steel counterface, and sliding speeds are varied between 0.25 and 1.25 m/s. Influence of sliding distance is investigated by varying sliding durations from 10 to 40 min at two fixed load-speed (PV) factors of 10 and 25 Nm/s. Worn pin surfaces and collected wear debris are analyzed using FESEM and energy-dispersive spectroscopy to reveal undergoing wear mechanisms. After initial decrease, wear rate increased almost linearly with speed and became twofold at the top speed. Wear rate transition is seen at 0.5 m/s with sliding distance for the applied pressure. Friction coefficient is not influenced significantly with sliding distance for the fixed PV condition. Adhesion and delamination governed the wear mechanism of base alloy while mechanically mixed layer played key role in the wear performance of composite matrix. Improved wear resistance of aluminum matrix is observed due to incorporation of small amount of B4C particulates making the composite better suited for wear-resistant applications than base alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. P. Rambabu, N.P. Eswara, V.V. Kutumbarao, R.J.H. Wanhill, Aluminum alloys for aerospace applications, in Aerospace materials and material technologies, Indian institute of metals series. ed. by N.P. Eswara, R.J.H. Wanhill (Springer, India, 2017), pp. 29–52

    Chapter  Google Scholar 

  2. S.V. Prasada, R. Asthana, Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004). https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  Google Scholar 

  3. P.A. Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Int J Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  4. X. Zhang, Y. Chen, J. Hu, Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 97, 22–34 (2018). https://doi.org/10.1016/j.paerosci.2018.01.001

    Article  Google Scholar 

  5. D.M. Shinde, P. Sahoo, Fabrication of aluminium metal matrix nanocomposites: an overview, in Recent advances in layered materials and structures, material horizons: from nature to nanomaterials. ed. by S. Sahoo (Springer, Singapore, 2021), pp. 107–132

    Google Scholar 

  6. X. Li, Y. Yang, X. Cheng, Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 39, 3211–3212 (2004). https://doi.org/10.1023/B:JMSC.0000025862.23609.6f

    Article  CAS  Google Scholar 

  7. L. Poovazhagan, K. Kalaichelvan, A. Rajadurai, Preparation of SiC nano-particulates reinforced aluminum matrix nanocomposites by high intensity ultrasonic cavitation process. Trans. Indian Inst. Met. 67(2), 229–237 (2014). https://doi.org/10.1007/s12666-013-0340-0

    Article  CAS  Google Scholar 

  8. H.M. Vishwanathaa, J. Eravellya, C.S. Kumarb, S. Ghosha, Dispersion of ceramic nano- particles in the Al-Cu alloy matrix using two step ultrasonic casting and resultant strengthening. Mater. Sci. Eng. A 708, 222–229 (2017). https://doi.org/10.1016/j.msea.2017.09.117

    Article  CAS  Google Scholar 

  9. X. Liu, S. Jia, L. Nastac, Ultrasonic cavitation-assisted molten metal processing of cast A356-nanocomposites. Int J Metalcast. 8, 51–58 (2014). https://doi.org/10.1007/BF03355591

    Article  CAS  Google Scholar 

  10. U. Aybarc, O. Ertugrul, M.O. Seydibeyoglu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00490-7

    Article  Google Scholar 

  11. F. He, E. Forthofer, Microstructure of high-performance pure Al/Nano-Si3N4 composites. Int. J. Metalcast. 5, 71–72 (2011). https://doi.org/10.1007/BF03355512

    Article  Google Scholar 

  12. G.P. Chaudhari, N. Srivastava, Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites. Mater. Sci. Eng. A 724, 199–207 (2018). https://doi.org/10.1016/j.ultras.2017.06.023

    Article  CAS  Google Scholar 

  13. H. Demirtaş, R. Yildiz, E. Çevik, Mechanical and wear properties of high rate NiAl particle-reinforced Al composites produced by pressure infiltration method. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-020-00564-6

    Article  Google Scholar 

  14. M. Moazami-Goudarzi, F. Akhlaghi, Wear behavior of Al 5252 alloy reinforced with micrometric and nanometric SiC particles. Tribol. Int. 102, 28–37 (2016). https://doi.org/10.1016/j.triboint.2016.05.013

    Article  CAS  Google Scholar 

  15. A. Nieto, H. Yang, L. Jiang, J.M. Schoenung, Reinforcement size effects on the abrasive wear of boron carbide reinforced aluminum composites. Wear 390–391, 228–235 (2017). https://doi.org/10.1016/j.wear.2017.08.002

    Article  CAS  Google Scholar 

  16. A.P. Reddy, P.V. Krishna, R.N. Rao, Dry sliding wear behaviour of ultrasonically-processed AA6061/SiCp nanocomposites. Int. J. Automot. Mech. Eng. 14, 4747–4568 (2017). https://doi.org/10.15282/ijame.14.4.2017.12.0373

    Article  CAS  Google Scholar 

  17. D.M. Shinde, P. Sahoo, J.P. Davim, Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: a review. Adv. Compos. Lett. 29, 1–28 (2020). https://doi.org/10.1177/2633366X20921403

    Article  Google Scholar 

  18. R. Ambigai, S. Prabhu, Optimization of friction and wear behaviour of Al-Si3N4 nano composite and Al-Gr-Si3N4 hybrid composite under dry sliding conditions. Trans. Nonferrous Met. Soc. China 27, 986–997 (2017). https://doi.org/10.1016/S1003-6326(17)60116-X

    Article  CAS  Google Scholar 

  19. Y. Liu, Z. Han, H. Cong, Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite. Wear 268, 976–983 (2010). https://doi.org/10.1016/j.wear.2009.12.027

    Article  CAS  Google Scholar 

  20. N.G.S. Kumar, T.R. Prabhu, G.S.S. Shankar, S. Basavarajappa, Dry sliding wear properties of unhybrid and hybrid Al alloy based nanocomposites. Tribol. Mater. Surf. Interface 10, 138–149 (2016). https://doi.org/10.1080/17515831.2016.1247132

    Article  CAS  Google Scholar 

  21. A. Baradeswaran, A.E. Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075- B4C composites. Comp. Part B 54, 146–152 (2013). https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  CAS  Google Scholar 

  22. I. Baker, Y. Sun, F.E. Kennedy, P.R. Munroe, Dry sliding wear of eutectic Al-Si. J. Mater. Sci. 45, 969–978 (2010). https://doi.org/10.1007/s10853-009-4027-1

    Article  CAS  Google Scholar 

  23. M.J.N. Isfahani, F. Payami, M.A. Asadabad, A.A. Shokri, Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites. J. Alloy. Comp. 797, 1348–1358 (2019). https://doi.org/10.1016/j.jallcom.2019.05.188

    Article  CAS  Google Scholar 

  24. F. Ubaid, P.R. Matli, R.A. Shakoor, G. Parande, V. Manakari, A.M.A. Mohamed, M. Gupta, Using B4C nanoparticles to enhance thermal and mechanical response of aluminum. Materials 10, 621 (2017). https://doi.org/10.3390/ma10060621

    Article  CAS  Google Scholar 

  25. F. Thevenot, Boron carbide- a comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990). https://doi.org/10.1016/0955-2219(90)90048-K

    Article  CAS  Google Scholar 

  26. A.J. Fyzik, D.R. Beaman, Al-B-C phase development and effects on mechanical properties of B4C/Al-derived composites. J Am. Cerum. Soc. 78(2), 305–312 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08801.x

    Article  Google Scholar 

  27. J.C. Viala, J. Bouix, G. Gonzalez, C. Esnouf, Chemical reactivity of aluminium with boron carbide. J. Mater. Res. 32, 4559–4573 (1997). https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  28. S. Poria, G. Sutradhar, P. Sahoo, Corrosion and lubricated sliding tribological behavior of Al-TiB2-nano Gr hybrid composites. Mater. Res. Express. 5, 076519 (2018). https://doi.org/10.1088/2053-1591/aad07b

    Article  CAS  Google Scholar 

  29. A. Pal, S. Poria, G. Sutradhar, P. Sahoo, Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method. Mater. Res. Express 5, 036521 (2018). https://doi.org/10.1088/2053-1591/aab577

    Article  CAS  Google Scholar 

  30. J. Li, S. Lü, S. Wu, Q. Gao, Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites. Ultrason. Sonochem. 42, 814–822 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.038

    Article  CAS  Google Scholar 

  31. N. Srivastava, G.P. Choudhari, Strengthening in Al alloy nano composites fabricated by ultrasound assisted solidification technique. Mater. Sci. Eng. A 651, 241–247 (2016). https://doi.org/10.1016/j.msea.2015.10.118

    Article  CAS  Google Scholar 

  32. R. Raj, D.G. Thakur, Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Arch. Civ. Mech. Eng. 16, 949–960 (2016). https://doi.org/10.1016/j.acme.2016.07.004

    Article  Google Scholar 

  33. F. Toptan, A. Kilicarslan, I. Kerti, The effect of Ti addition on the properties of Al-B4C interface: a microstructural study. Mater. Sci. Forum 637, 192–197 (2010). https://doi.org/10.4028/www.scientific.net/MSF.636-637.192

    Article  CAS  Google Scholar 

  34. W.H. Tarn, P. Walker, Handbook of Metal Etchants (CRC Press LLC, New York, 1991)

    Google Scholar 

  35. J. Hemanth, Tribological behavior of cryogenically treated B4C/Al-12%Si composites. Wear 258, 1732–1744 (2005). https://doi.org/10.1016/j.wear.2004.12.009

    Article  CAS  Google Scholar 

  36. J. Zhang, A.T. Alpas, Transition between mild and severe wear in aluminium alloys. Acta. Mater. 45(2), 513–528 (1997). https://doi.org/10.1016/S1359-6454(96)00191-7

    Article  CAS  Google Scholar 

  37. S. Wilson, A.T. Alpas, Wear mechanism maps for metal matrix composites. Wear 212, 41–49 (1997). https://doi.org/10.1016/S0043-1648(97)00142-7

    Article  CAS  Google Scholar 

  38. M.R. Dehnavi, B. Niroumand, F. Ashrafizadeh, P.K. Rohatgi, Effects of continuous and discontinuous ultrasonic treatments on mechanical properties and microstructural characteristics of cast A413-SiCnp nanoparticles. Mater. Sci. Eng. A 617, 73–83 (2014). https://doi.org/10.1016/j.msea.2014.08.042

    Article  CAS  Google Scholar 

  39. S. Kandemir, H.V. Atkinson, D.P. Weston, S.V. Hainsworth, Thixoforming of A356/SiC and A356/TiB2 nanocomposites fabricated by a combination of green compact nanoparticle iincorporation and ultrasonic treatment of the melted compact. Metall. Mater. Trans. A. 45A, 5785–5798 (2014). https://doi.org/10.1007/s11661-014-2501-0

    Article  CAS  Google Scholar 

  40. S. Jia, D. Zhang, Y. Xuan, L. Nastac, An experimental and modeling investigation of aluminum-based alloys and nanocomposites processed by ultrasonic cavitation processing. Appl. Acoust. 103, 226–231 (2016). https://doi.org/10.1016/j.apacoust.2015.07.016

    Article  Google Scholar 

  41. M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  42. D.M. Shinde, S. Poria, P. Sahoo, Synthesis and characterization of Al-B4C nano composites. Mater Today-Proc. 19, 170–176 (2019). https://doi.org/10.1016/j.matpr.2019.06.641

    Article  CAS  Google Scholar 

  43. Y. Xuan, L. Nastac, The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process. Ultrasonics 83, 94–102 (2018). https://doi.org/10.1016/j.ultras.2017.06.023

    Article  CAS  Google Scholar 

  44. H.M. Vishwanatha, J. Eravelly, C.S. Kumar, S. Ghosh, Dispersion of ceramic nano-particles in the Al-Cu alloy matrix using two-step ultrasonic casting and resultant strengthening. Mater. Sci. Eng. A 708, 222–229 (2017). https://doi.org/10.1016/j.msea.2017.09.117

    Article  CAS  Google Scholar 

  45. C. Subramanian, Effects of sliding speed on the unlubricated wear behaviour of Al-12.3wt.% Si alloy. Wear 151, 97–110 (1991). https://doi.org/10.1016/0043-1648(91)90349-Y

    Article  CAS  Google Scholar 

  46. A. Daouda, M.T. Abou-Elkhair, P. Rohatgi, Wear and friction behavior of near eutectic Al–Si+ZrO2 or WC particle composites. Compos. Sci. Technol. 64, 1029–1040 (2004). https://doi.org/10.1016/j.compscitech.2003.09.020

    Article  CAS  Google Scholar 

  47. H.R. Lashgari, A.R. Sufizadeh, M. Emamy, The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Mater. Des. 31, 2187–2195 (2010). https://doi.org/10.1016/j.matdes.2009.10.049

    Article  CAS  Google Scholar 

  48. V.V. Monikandan, M.A. Joseph, P.K. Rajendrakumar, M. Sreejith, Tribological behavior of liquid metallurgy-processed AA6061-B4C composites. Mater. Res. Express 2, 016507 (2015). https://doi.org/10.1088/2053-1591/2/1/016507

    Article  CAS  Google Scholar 

  49. A. Ravikiran, M.K. Surappa, Oscillations in coefficient of friction during dry sliding of A356-30% wt SiCp MMC against steel. Scripta Mataialia 36(1), 95–98 (1997). https://doi.org/10.1016/S1359-6462(96)00337-5

    Article  CAS  Google Scholar 

  50. S.A. Alidokht, A. Abdollah, H. Assadi, Effect of applied load on the dry sliding wear behavior and the subsurface deformation on hybrid metal matrix composite. Wear 305, 291–298 (2013). https://doi.org/10.1016/j.wear.2012.11.043

    Article  CAS  Google Scholar 

  51. A. Abdollahi, A. Alizadeh, H.R. Baharvandi, Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion. Mater. Des. 55, 471–481 (2014). https://doi.org/10.1016/j.matdes.2013.09.024

    Article  CAS  Google Scholar 

  52. M.R. Rosenberger, C.E. Schvezov, E. Forlerer, Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear 259, 590–601 (2005). https://doi.org/10.1016/j.wear.2005.02.003

    Article  CAS  Google Scholar 

  53. X.Y. Li, K.N. Tandon, Mechanical mixing induced by sliding wear of an Al-Si alloy against M2 steel. Wear 225–229, 640–648 (1999). https://doi.org/10.1016/S0043-1648(99)00021-6

    Article  Google Scholar 

  54. D. Lu, M. Gu, Z. Shi, Material transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel. Tribol. Lett. 6, 57–61 (1999). https://doi.org/10.1023/A:1019182817316

    Article  CAS  Google Scholar 

  55. L. Poovazhagan, K. Kalaichelvan, T. Sornakumar, Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites. Mater. Manuf. Process 31, 1275–1285 (2016). https://doi.org/10.1080/10426914.2015.1026354

    Article  CAS  Google Scholar 

  56. D.K. Dwivedi, A. Sharma, T.V. Rajan, Interface temperature under dry sliding conditions. Mater. Trans. 43(9), 2256–2261 (2002). https://doi.org/10.2320/matertrans.43.2256

    Article  CAS  Google Scholar 

  57. S.T. Kumaran, M. Uthayakumar, Investigation on the dry sliding friction and wear behavior of AA6361-SiC-B4C hybrid metal matrix composites. Proc. IMechE Part J: J. Eng. Tribol. 228(3), 332–338 (2014). https://doi.org/10.1177/1350650113508103

    Article  CAS  Google Scholar 

  58. N. Yuvaraj, S. Aravindan, Vipin, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J. Mater. Res. Technol. 4(4), 398–410 (2015). https://doi.org/10.1016/j.jmrt.2015.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge material characterization (FESEM-EDS) facilities provided at Mechanical engineering department, Indian Institute of Technology, Mumbai.

Funding

This research study has not received financial support from any organization in public or private sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Sahoo.

Ethics declarations

Conflict of interest

Authors have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, D.M., Sahoo, P. Influence of Speed and Sliding Distance on the Tribological Performance of Submicron Particulate Reinforced Al-12Si /1.5 Wt% B4C Composite. Inter Metalcast 16, 739–758 (2022). https://doi.org/10.1007/s40962-021-00636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00636-1

Keywords

Navigation