Skip to main content
Log in

Comparative Evaluation of Ex Situ and In Situ Method of Fabricating Aluminum/TiB2 Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2020

This article has been updated

Abstract

In the present work, Al–TiB2 composites were casted using in situ and ex situ method of fabrication. The effect of processing temperature on the formation of titanium diboride particles was studied, and comparative evaluation of in situ and ex situ method was carried out. Characterization of composites was carried out to study the effect of various process parameters on the mechanical properties. The microstructure of in situ composites shows a homogeneous distribution of titanium diboride particles without agglomeration as compared to ex situ composites. SEM micrographs of in situ composites show distinct and reaction-free boundaries between reinforcement and matrix material as compared to the ex situ composites. In addition, average UTS of in situ AlSi5Cu3/3%TiB2 composite and ex situ AlSi5Cu3/3%TiB2 composite increased by 80.13% and 39.72% as compared to pure AlSi5Cu3, respectively. The average hardness of in situ AlSi5Cu3/3%TiB2 composite and ex situ AlSi5Cu3/3%TiB2 composite casted in metal mold increased by 45% and 31.66%, respectively, as compared to pure AlSi5Cu3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Change history

References

  1. M.K. Akbari, H.R. Baharvandi, O. Mirzaee, Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix. Compos. B Eng. 52, 262–268 (2013)

    Article  CAS  Google Scholar 

  2. ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 (ASM International, Philadelphia, 1990)

    Book  Google Scholar 

  3. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  4. V.S. Ayar, T.R. Mehta, M.P. Sutaria, Enhancement of mechanical properties of AlSi5Cu3 aluminum alloy using TiB2 reinforcements. IOP Conf. Ser. Mater. Sci. Eng. 455, 012127 (2018)

    Article  Google Scholar 

  5. N. Chawla, K.K. Chawla, Composite Materials: Science and Engineering (Springer, Berlin, 2012)

    Book  Google Scholar 

  6. Z.Y. Chen, Y.Y. Chen, Q. Shu, G.Y. An, D. Li, D.S. Xu, Y.Y. Liu, Solidification and interfacial structure of in situ Al–4.5Cu/TiB2 composite. J. Mater. Sci. 35, 5605–5608 (2000)

    Article  CAS  Google Scholar 

  7. Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites—part I: an improved halide salt route to fabricate Al–5 wt% TiB2 master composite. Mater. Sci. Eng. A 605, 301–309 (2014)

    Article  CAS  Google Scholar 

  8. A.M. Davidson, D. Regener, A comparison of aluminium-based metal-matrix composites reinforced with coated and uncoated particulate silicon carbide. Compos. Sci. Technol. 60, 865–869 (2000)

    Article  CAS  Google Scholar 

  9. P. Davies, J.L.F. Kellie, D.P. Parton, J.V. Wood, Metal Matrix Alloys. U.S. Patent No. 6,228,185. U.S. Patent and Trademark Office, Washington, DC (2001)

  10. H.P. Degischer, Innovative Light Metals: Metal Matrix Composites and Foamed Aluminium. Mater. Des. 18, 221–226 (1997)

    Article  CAS  Google Scholar 

  11. G.I. Eskin, D.G. Eskin, Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrason. Sonochem. 10, 297–301 (2003)

    Article  CAS  Google Scholar 

  12. C.F. Feng, L. Froyen, In situ synthesis of Al2O3 and TiB2 particulate mixture reinforced aluminium matrix composites. Scr. Mater. 36, 467–473 (1997)

    Article  CAS  Google Scholar 

  13. Y. Han, X. Liu, X. Bian, In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites. Compos. A Appl. Sci. Manuf. 33, 439–444 (2002)

    Article  Google Scholar 

  14. J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999)

    Article  Google Scholar 

  15. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26, 1137–1156 (1991)

    Article  CAS  Google Scholar 

  16. X. Kai, K. Tian, C. Wang, L. Jiao, G. Chen, Y. Zhao, Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction. J. Alloys Compd. 668, 121–127 (2016)

    Article  CAS  Google Scholar 

  17. A.R. Kennedy, S.M. Wyatt, The effect of processing on the mechanical properties and interfacial strength of aluminium/TiC MMCs. Compos. Sci. Technol. 60, 307–314 (2000)

    Article  CAS  Google Scholar 

  18. S. Kumar, M. Chakraborty, V.S. Sarma, B.S. Murty, Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134–142 (2008)

    Article  CAS  Google Scholar 

  19. S. Kumar, V.S. Sarma, B.S. Murty, Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al–4Cu alloy. Mater. Sci. Eng. A 465, 160–164 (2007)

    Article  CAS  Google Scholar 

  20. S. Kumar, V.S. Sarma, B.S. Murty, A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles. Mater. Sci. Eng. A 476, 333–340 (2008)

    Article  CAS  Google Scholar 

  21. D.J. Lloyd, S.K. Das, C.P. Ballard, F. Marikar, High Performance Composites for the 1990s (TMS, Warrendable, PA, 1990)

    Google Scholar 

  22. L. Lu, M.O. Lai, F.L. Chen, Al–4 wt% Cu composite reinforced with in situ TiB2 particles. Acta Mater. 45, 4297–4309 (1997)

    Article  CAS  Google Scholar 

  23. L. Lu, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, In situ TiB2 reinforced Al alloy composites. Scr. Mater. 45, 1017–1023 (2001)

    Article  CAS  Google Scholar 

  24. A. Mandal, M. Chakraborty, B.S. Murty, Ageing behaviour of A356 alloy reinforced with in situ formed TiB2 particles. Mater. Sci. Eng. A 489, 220–226 (2008)

    Article  CAS  Google Scholar 

  25. A. Mazahery, M.O. Shabani, Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceram. Int. 38, 4263–4269 (2012)

    Article  CAS  Google Scholar 

  26. J.J. Moses, S.J. Sekhar, Investigation on the tensile strength and microhardness of AA6061/TiC composites by stir casting. Trans. Indian Inst. Met. 70, 1035–1046 (2017)

    Article  CAS  Google Scholar 

  27. S. Natarajan, R. Narayanasamy, S.K. Babu, G. Dinesh, B.A. Kumar, K. Sivaprasad, Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures. Mater. Des. 30, 2521–2531 (2009)

    Article  CAS  Google Scholar 

  28. H. Okamoto, L. Kacprzak, P.R. Subramanian (eds.), Binary Alloy Phase Diagrams (ASM international, Materials Park, OH, 1996)

    Google Scholar 

  29. S. Poria, P. Sahoo, G. Sutradhar, Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites. Silicon 8, 591–599 (2016)

    Article  CAS  Google Scholar 

  30. S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171, 268–273 (2006)

    Article  CAS  Google Scholar 

  31. S.L. Pramod, S.R. Bakshi, B.S. Murty, Aluminum-based cast in situ composites: a review. J. Mater. Eng. Perform. 24, 2185–2207 (2015)

    Article  CAS  Google Scholar 

  32. S.L. Pramod, A.P. Rao, B.S. Murty, S.R. Bakshi, Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356–TiB2 in situ composite. Mater. Des. 78, 85–94 (2015)

    Article  CAS  Google Scholar 

  33. K.S. Prasad, B.S. Murty, P. Pramanik, P.G. Mukunda, M. Chakraborty, Reaction of fluoride salts with aluminum. Mater. Sci. Technol. 12, 766–770 (1996)

    Article  CAS  Google Scholar 

  34. H. Puga, J.C. Teixeira, J. Barbosa, E. Seabra, S. Ribeiro, M. Prokic, The combined effect of melt stirring and ultrasonic agitation on the degassing efficiency of AlSi9Cu3 alloy. Mater. Lett. 63, 2089–2092 (2009)

    Article  CAS  Google Scholar 

  35. H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438–445 (2013)

    Article  CAS  Google Scholar 

  36. H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch. Civ. Mech. Eng. 14, 72–79 (2014)

    Article  Google Scholar 

  37. C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in situ composites. Mater. Sci. Eng. A 528, 4125–4132 (2011)

    Article  CAS  Google Scholar 

  38. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, A metallographic study of grain refining of Sr-modified 356 alloy. Int. J. Metalcast. 11, 305–320 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  Google Scholar 

  39. R. Shobha, K.R. Suresh, H.B. Niranjan, K.G. Satyanarayana, Achieving enhanced mechanical properties and analysis of chemical kinetics of the in situ reaction in an Al–TiB2 in situ composite. Adv. Mater. Res. 129, 1385–1388 (2010)

    Article  CAS  Google Scholar 

  40. S. Singh, I. Singh, A. Dvivedi, Design and development of novel cost effective casting route for production of metal matrix composites (MMCs). Int. J. Cast Met. Res. 30, 356–364 (2017)

    Article  Google Scholar 

  41. M.D. Skibo, D.M. Schuster, Process for preparation of composite materials containing nonmetallic particles in a metallic matrix and composite materials made thereby. United States Patents, Patent No. 4,786,467 (1988)

  42. A.K. Surappa, P.K. Rohatgi, Preparation and properties of cast aluminium ceramic particle composites. J. Mater. Sci. 16, 983–993 (1981)

    Article  CAS  Google Scholar 

  43. H. Su, W. Gao, H. Zhang, H. Liu, J. Lu, Z. Lu, Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J. Manuf. Sci. Eng. 132, 061007 (2010)

    Article  Google Scholar 

  44. K.L. Tee, L. Lu, M.O. Lai, Synthesis of in situ Al–TiB2 composites using stir cast route. Compos. Struct. 47, 589–593 (1999)

    Article  Google Scholar 

  45. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R 29, 49–113 (2000)

    Article  Google Scholar 

  46. B. Yang, Y.Q. Wang, B.L. Zhou, The mechanism of formation of TiB2 particulates prepared by in situ reaction in molten aluminum. Metall. Mater. Trans. B 29, 635–640 (1998)

    Article  Google Scholar 

  47. N.L. Yue, L. Lu, M.O. Lai, Application of thermodynamic calculation in the in situ process of Al/TiB2. Compos. Struct. 47, 691–694 (1999)

    Article  Google Scholar 

  48. J. Zhang, Z. Fan, Y.-Q. Wang, B.-L. Zhou, Microstructure and mechanical properties of in situ Al–Mg2Si composites. Mater. Sci. Technol. 16, 913–918 (2000)

    Article  CAS  Google Scholar 

  49. Y. Zhang, N. Ma, H. Wang, Y. Le, X. Li, Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. 28, 628–632 (2007)

    Article  CAS  Google Scholar 

  50. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483, 148–152 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Department of Science and Technology (DST), New Delhi, sponsored SMART Foundry Project (DST/TSG/AMT/2015/332 dated 17/08/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Ayar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: AlSi5Cu3 was corrected to AlSi5Cu3 throughout the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayar, V.S., Sutaria, M.P. Comparative Evaluation of Ex Situ and In Situ Method of Fabricating Aluminum/TiB2 Composites. Inter Metalcast 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00539-7

Keywords

Navigation