Skip to main content
Log in

Effect of Transition Metals on the Tensile Properties of 354 Alloy: Role of Precipitation Hardening

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study was carried out to investigate the effects of minor additions of Ni and Zr, individually or in combination, on the microstructure and tensile properties of 354 casting alloy (Al–9 wt%Si–1.8 wt%Cu–0.5 wt%Mg) at room temperature (25 °C/77 °F) and at high temperatures (155 and 300 °C/311 and 572 °F) using different holding times at testing temperature. An analysis of the data obtained from microstructural and tensile tests shows that the tensile behavior of 354-type cast alloys is strongly influenced by the testing temperature and the holding time at temperature prior to testing. The effect of minor additions of Ni and Zr on the high-temperature performance of these alloys is controlled by their T6-properties at room temperature. The addition of 0.2 wt% Ni and 0.2 wt% Zr improves the T6-tensile properties considerably, compared to the as-cast condition. The addition of 0.4 wt% Ni + 0.4 wt% Zr is not sufficient to resist softening at 300 °C (572 °F)/100 h. The addition of 0.4 wt% Ni to alloy 354 leads to a decrease in the tensile properties, attributed to a Ni–Cu reaction that interferes with the formation of Al2Cu strengthening precipitates and affects the age-hardening process. The fine L12 (Al3(Zr,Ti))-type precipitates is the main feature observed in the microstructure of alloys containing 0.2–0.4 wt% Zr additions. The presence of Q-Al5Cu2Mg8Si6 phase and Al3Ni phase is observed in samples tested at 300 °C (572 °F) after 10 h holding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. A.M.A. Mohamed, F.H. Samuel, S.A. Alkahtani, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng. A 577, 64–72 (2013)

    Article  Google Scholar 

  2. H.M. Kandil, None-combustible water-based quenchants in forging shops for automotive parts—latest development, in The 1st International Automotive Heat Treating Conference, (Puerto Vallarta, Mexico, 1998), pp. 106–109

  3. S. Seifeddine, The influence of iron and Mg content on the microstructure and tensile properties of cast Al–Si–Mg alloys, in Vilmer Project-5.2 Casting, (The School of Engineering Component Technology, Sweden, 2007)

  4. G.H. Garza Elizondo, Machinability of Al(7–11%)Si Casting Alloys: Role of Free-Cutting Elements, Master’s Thesis, (Université du Québec à Chicoutimi, Chicoutimi, QC, 2010)

  5. ASM Handbook, Heat Treating of Aluminum Alloys, vol. 4, 10th edn. (American Society for Metals, Materials Park, OH, 1991)

    Google Scholar 

  6. D.G. Eskin, Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. J. Mater. Sci. 38, 279–290 (2003)

    Article  Google Scholar 

  7. S.K. Son, M. Takeda, M. Mitome, Y. Bando, T. Endo, Precipitation behaviour of an Al–Cu alloy during isothermal aging at low temperatures. Mater. Lett. 75, 629–632 (2005)

    Article  Google Scholar 

  8. S.P. Ringer, K. Hono, Microstructural evolution and age hardening in aluminum alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101–131 (2000)

    Article  Google Scholar 

  9. C.R. Hutchinson, S.P. Ringer, Precipitation processes in Al–Cu–Mg alloys microalloyed with Si. Metall. Mater. Trans. A 31A, 2721–2733 (2000)

    Article  Google Scholar 

  10. S. Abis, M. Massazza, P. Mengucci, G. Tiontino, Early ageing mechanisms in a high-copper AlCuMg alloy. Scr. Mater. 45, 685–691 (2001)

    Article  Google Scholar 

  11. G.E. Totten, D.S. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes, vol. 1 (Marcel Dekker, NY, 2003)

  12. S.C. Wang, M.J. Starink, N. Gao, Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287–291 (2006)

    Article  Google Scholar 

  13. P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Effect of cooling rate and predeformation on the precipitation hardening of an Al–4.2 wt%Mg–0.6 wt%Cu alloy. Scr. Mater. 38(8), 1195–1201 (1998)

    Article  Google Scholar 

  14. A. Charai, T. Walther, C. Alfonso, A.M. Zahra, C.Y. Zabra, Coexistence of clusters, GPB zones, S″-, S′- and S-phases in an Al-0.9 %Cu-1.7 %Mg alloy. Acta Mater. 48, 2751–2764 (2000)

    Article  Google Scholar 

  15. P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Precipitation hardening of an Al–4.2 wt%Mg–0.6 wt%Cu alloy. Acta Mater. 46(10), 3523–3533 (1998)

    Article  Google Scholar 

  16. C. Cayron, P.A. Buffat, Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Mater. 48, 2639–2653 (2000)

    Article  Google Scholar 

  17. K. Matsuda, D. Teguri, T. Sato, S. Ikeno, EFTEM observation of Q′ phase in Al–Mg–Si–Cu alloy. Mater. Sci. Forum 396–402, 947–952 (2002)

    Article  Google Scholar 

  18. J.Y. Hwang, R. Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of type 319 aluminum casting alloys. Acta Mater. 57, 1308–1317 (2009)

    Article  Google Scholar 

  19. G. Wang, Q. Sun, L. Feng, L. Hui, C. Jing, Influence of Cu content on aging behavior of AlSiMgCu cast alloys. Mater. Des. 28, 1001–1005 (2007)

    Article  Google Scholar 

  20. J. Buha, R.N. Lumley, A.G. Crosky, Microstructural development and mechanical properties of interrupted aged Al–Mg–Si–Cu alloy. Metall. Mater. Trans. A 37A, 3119–3129 (2006)

    Article  Google Scholar 

  21. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893–3904 (1998)

    Article  Google Scholar 

  22. L. Ceschini, A. Jarfors, A. Morri, A. Morri, F. Rotundo, S. Seifeddine, S. Toschi, High temperature tensile behaviour of the A354 aluminum alloy. Mater. Sci. Forum 794–796, 443–448 (2014)

    Article  Google Scholar 

  23. J. Murray, A. Peruzzi, J.P. Abriata, The Al–Zr (aluminum–zirconium) system. J. Phase Equilib. 13, 276–291 (1992)

    Article  Google Scholar 

  24. D. Emadi, L.V. Whiting, M. Sahoo, J.H. Sokolowski, P. Burke, M. Hart, Optimal heat treatment of A356.2 alloy, in Light Metals, (The Minerals, Metals, and Materials Society, Warrendale, PA, 2003), pp. 983–989

  25. D. Apelian, S. Shivkumar, G. Sigworth, Fundamental aspects of heat treatment of cast Al–Si–Mg alloys. AFS Trans. 97, 727–742 (1989)

    Google Scholar 

  26. E.A. Elsharkawi, Effects of Metallurgical Parameters on the Decomposition of π-AlFeMgSi Phase in Al–Si–Mg Alloys and Its Influence on the Mechanical Properties, Ph.D. Thesis, (Université du Québec à Chicoutimi, Chicoutimi, QC, 2011)

  27. M. Easton, W.Q. Song, T. Abbott, A comparison of the deformation of magnesium alloys with aluminum and steel in tension, bending and buckling. Mater. Des. 27, 935–946 (2006)

    Article  Google Scholar 

  28. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys part I: tensile properties. Mater. Sci. Eng. A A367, 96–110 (2004)

    Article  Google Scholar 

  29. E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, M.A. Cisneros, Effect of temperature on the tensile properties of an as-cast aluminum alloy A319. Mater. Sci. Eng. A 452–453, 682–687 (2007)

    Article  Google Scholar 

  30. D.H. St. John, L.M. Hogan, The peritectic transformation. Acta Metall. 25, 77–81 (1977)

    Article  Google Scholar 

  31. K.E. Knipling, Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates, Ph.D. Thesis, (Northwestern University, Evanston, IL, 2006)

  32. N.R. Andrade González, Aging Effects in 319-Type Alloys, Ph.D. Thesis, (McGill University, 2006)

  33. F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging. Mater. Sci. Eng. 480(1–2), 356–364 (2008)

    Article  Google Scholar 

  34. F.J. Tavitas-Medrano, A.M.A. Mohamed, J.E. Gruzleski, F.H. Samuel, H.W. Doty, Precipitation-hardening in cast Al–Si–Cu–Mg alloys. J. Mater. Sci. 45, 641–651 (2010)

    Article  Google Scholar 

  35. F.J. Tavitas-Medrano, S. Valtierra, J.E. Gruzleski, F.H. Samuel, H.W. Doty, 08-018 A TEM study of the aging behavior of 319 type alloys. AFS Trans. 116, 99–114 (2008)

    Google Scholar 

  36. F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging. Mater. Sci. Eng. A 480, 356–364 (2008)

    Article  Google Scholar 

  37. P. Prasad, Characterization of New, Cast, High Temperature Aluminum Alloys for Diesel Engine Applications, Master’s Thesis, (University of Cincinati, Cincinati, 2006)

  38. A.M. Nabawy, Influence of Zirconium and Scandium on the Microstructure, Tensile Properties, and Hot-Tearing Susceptibility of Al2 wt%Cu-Based Alloys, Ph.D. Thesis, (Université du Québec à Chicoutimi, Chicoutimi, QC, 2010)

  39. L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Foundry Alloys, Vol. 2, (AFS/Skanaluminium, Des Plaines, IL, 1990)

  40. S.G. Shabestari, S. Ghodrat, Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis. Mater. Sci. Eng. A 467, 150–158 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Amal Samuel for enhancing the art work in the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garza-Elizondo, G.H., Samuel, A.M., Valtierra, S. et al. Effect of Transition Metals on the Tensile Properties of 354 Alloy: Role of Precipitation Hardening. Inter Metalcast 11, 413–427 (2017). https://doi.org/10.1007/s40962-016-0074-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0074-y

Keywords

Navigation