Skip to main content

Advertisement

Log in

The Impact of Cooperative R&D and Advertising on Innovation and Welfare

  • Original Article
  • Published:
Journal of Quantitative Economics Aims and scope Submit manuscript

Abstract

This paper studies the impact of cooperative R&D and advertising on innovation and welfare in a duopolistic industry. The model incorporates two symmetric firms producing differentiated products. Firms invest in R&D and advertising in the presence of R&D spillovers and advertising spillovers. Advertising spillovers may be positive or negative. Four cooperative structures are studied: no cooperation, R&D cooperation, advertising cooperation, R&D and advertising cooperation. R&D spillovers and advertising spillovers always increase innovation and welfare if products are highly differentiated and/or spillovers are sufficiently high. The ranking of cooperation settings in terms of R&D, profits and welfare depends on product differentiation, R&D spillovers and advertising externalities. Firms always prefer cooperation on both dimensions, which is socially beneficial only when advertising and R&D spillovers are sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Genetically modified organisms (GMOs) are living organisms whose genetic material has been artificially manipulated in a laboratory through genetic engineering.

  2. Spillovers refer to R&D and advertising spillovers.

  3. The complementary view admits that advertising may contain information and influence consumer behavior accordingly. However, the consumer may value “social prestige,” and advertising by a firm may be an input that contributes toward the prestige that increases satisfaction when the firm’s product is consumed.

  4. Advertising in this paper is not similar to advertising a price for a product, which is purely informative.

  5. Detailed analysis and proofs are provided in the “Appendix”.

  6. \( AE = \frac{{\partial \pi_{1} }}{{\partial a_{2} }} = \frac{{2\left( {2\theta - b} \right)\left[ {\left( {k - \alpha } \right) + \left( {1 + \theta } \right)a_{2} + \left( {1 + \beta } \right)x_{2} } \right]}}{{\left( {2 - b} \right)\left( {2 + b} \right)^{2} }} \).

  7. \( RE = \frac{{\partial \pi_{1} }}{{\partial x_{2} }} = \frac{{2\left( {2\beta - b} \right)\left[ {\left( {k - \alpha } \right) + \left( {1 + \theta } \right)a_{2} + \left( {1 + \beta } \right)x_{2} } \right]}}{{\left( {2 - b} \right)\left( {2 + b} \right)^{2} }} \).

  8. RA internalizes the sum of AE and RE, such that \( \frac{{\partial \pi_{1} }}{{\partial x_{2} }} + \frac{{\partial \pi_{1} }}{{\partial a_{2} }} = \frac{{4\left( {\theta + \beta - b} \right)\left[ {\left( {k - \alpha } \right) + \left( {1 + \theta } \right)a_{2} + \left( {1 + \beta } \right)x_{2} } \right]}}{{\left( {2 - b} \right)\left( {2 + b} \right)^{2} }} \).

  9. This situation corresponds to the last two cases of Proposition 4 above, as already mentioned.

  10. This corresponds to the first seven cases of Proposition 4.

References

  • Anderson, Simon P., Federico Ciliberto, Jura Liaukonyte, and RĂ©gis Renault. 2016. Push-me pull-you: Comparative advertising in the OTC analgesics industry. The Rand Journal of Economics 47 (4): 1–47.

    Article  Google Scholar 

  • Aschhoff, Birgit, and Tobias Schmidt. 2008. Empirical evidence on the success of R&D cooperation—Happy together? Review of Industrial Organization 33 (1): 41–62.

    Article  Google Scholar 

  • Askenazy, Philippe, Thomas Breda, and Delphine Irac. 2016. Advertising and R&D: Theory and evidence from France. Economics of Innovation and New Technology 25 (1): 33–56.

    Article  Google Scholar 

  • Atallah, Gamal. 2002. Vertical R&D spillovers, cooperation, market structure, and innovation. Economics of Innovation and New Technology 11 (3): 179–209.

    Article  Google Scholar 

  • Bagwell, Kyle. 2007. The economic analysis of advertising. In Handbook of industrial organization, vol. 3, ed. Mark Armstrong and Robert H. Porter, 1701–1844. Amsterdam: North-Holland.

    Google Scholar 

  • Becker, Gary, and Kevin M. Murphy. 1993. A simple theory of advertising as a good or bad. The Quarterly Journal of Economics 108 (4): 941–964.

    Article  Google Scholar 

  • Belderbos, Rene, Martin Carree, Bert Diederen, Boris Lokshin, and Reinhilde Veugelers. 2004. Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization 22 (8–9): 1237–1263.

    Article  Google Scholar 

  • Cellini, Roberto, and Luca Lambertini. 2002. Advertising with spillover effects in a differential oligopoly game with differentiated goods. Working paper. Department of Economics, University of Bologna, Italy, January.

  • Commuri, Suraj. 2009. The impact of counterfeiting on genuine-item consumers’ brand relationships. Journal of Marketing 73 (3): 86–98.

    Google Scholar 

  • Drucker, Peter. 1954. The practice of management. New York: Harper & Brothers.

    Google Scholar 

  • Friedman, James W. 1983. Advertising and oligopolistic equilibrium. The Bell Journal of Economics 14 (2): 464–473.

    Article  Google Scholar 

  • Fritsch, Michael, and Rolf Lukas. 2001. Who cooperates on R&D? Research Policy 30: 297–312.

    Article  Google Scholar 

  • Gasmi, Farid, Jean Jacques Laffont, and Quang Vuong. 1992. Econometric analysis of collusive behaviour in a soft-drink market. Journal of Economics & Management Strategy 1 (2): 277–311.

    Article  Google Scholar 

  • Gou, Qinglong, Juan Zhang, Liang Liang, Zhimin Huang, and Allan Ashley. 2014. Horizontal cooperative programmes and cooperative advertising. International Journal of Production Research 52 (3): 691–712.

    Article  Google Scholar 

  • Griffin, Abbie, and John R. Hauser. 1996. Integrating R&D and marketing: A review and analysis of the literature. Journal of Product Innovation Management 13 (3): 191–215.

    Article  Google Scholar 

  • Hirschey, Mark, and Jerry J. Weygandt. 1985. Amortization policy for advertising and research and development expenditures. Journal of Accounting Research 23 (1): 326–335.

    Article  Google Scholar 

  • Kadiyali, Vrinda. 1996. Entry, its deterrence, and its accommodation: A study of the U.S. photographic film industry. The RAND Journal of Economics 27 (3): 452–478.

    Article  Google Scholar 

  • Kaiser, Ulrich. 2005. A microeconometric note on product innovation and product innovation advertising. Economics of Innovation and New Technology 14 (7): 573–582.

    Article  Google Scholar 

  • Kleinknecht, Alfred, and Jeroen O.N. Reijnen. 1992. Why do firms cooperate on R&D? An empirical study. Research Policy 21: 347–360.

    Article  Google Scholar 

  • Kwoka Jr., John E. 1993. The sales and competitive effects of styling and advertising practices in the U.S. auto industry. The Review of Economics and Statistics 75 (4): 649–656.

    Article  Google Scholar 

  • Kwong, Winghan Jacqueline, and Edward C. Norton. 2007. The effect of advertising on pharmaceutical innovation. Review of Industrial Organization 31 (3): 221–236.

    Article  Google Scholar 

  • Matraves, Catherine. 1999. Market structure, R&D and advertising in the pharmaceutical industry. Journal of Industrial Economics 47 (2): 169–194.

    Article  Google Scholar 

  • Nerlove, Marc, and Frederick V. Waugh. 1961. Advertising without supply control: Some implications of a study of the advertising of oranges. Journal of Farm Economics 43 (4): 813–837.

    Article  Google Scholar 

  • Nielsen, Bo Bernhard. 2002. Cooperative strategies and alliances. Journal of International Business Studies 34 (5): 489–491.

    Article  Google Scholar 

  • Nooteboom, Bart. 1999. Inter-firm alliances—Analysis and design, 1st ed. London: Routledge.

    Book  Google Scholar 

  • Roberts, Mark J., and Larry Samuelson. 1988. An empirical analysis of dynamic, non-price competition in an oligopolistic industry. The Rand Journal of Economics 19 (2): 200–220.

    Article  Google Scholar 

  • Sahni, Navdeep S. 2016. Advertising spillovers: Evidence from online field-experiments and implications for returns on advertising. Journal of Marketing Research 14: 1–52.

    Google Scholar 

  • Seldon, Barry J., and Khosrow Doroodian. 1989. A simultaneous model of cigarette advertising: Effects of demand and industry response to public policy. The Review of Economics and Statistics 71 (4): 673–677.

    Article  Google Scholar 

  • Shapiro, Bradley T. 2018. Positive spillovers and free riding in advertising of prescription pharmaceuticals: The case of antidepressants. Journal of Political Economy 126 (1): 381–437.

    Article  Google Scholar 

  • Siebert, Ralph. 1996. The impact of research joint ventures on firm performance: An empirical assessment. Working paper, Social Science Research Centre: Berlin, August.

  • Sridhar, Shrihari, Sriram Narayanan, and Raji Srinivasan. 2014. Dynamic relationships among R&D, advertising, inventory and firm performance. Journal of the Academy of Marketing Science 42 (3): 277–290.

    Article  Google Scholar 

  • Tether, Bruce S. 2002. Who co-operates for innovation, and why: An empirical analysis. Research Policy 31: 947–967.

    Article  Google Scholar 

  • Vanhaverbeke, Wim, Geert Duysters, and Niels Noorderhaven. 2002. External technology sourcing through alliances or acquisitions: An analysis of the application-specific integrated circuits industry. Organization Science 13 (6): 714–733.

    Article  Google Scholar 

  • Wang, Shinn Shyr, Tirtha P. Dhar, and Kyle W. Stiegert. 2004. An empirical analysis of strategic pricing and advertising for differentiated products. In Conference Paper, Industrial Organization and the Food Processing Industry, France: Toulouse, June.

Download references

Acknowledgements

The authors would like to thank an anonymous referee, David Brown, Zhiqi Chen, Meredith Lilly, Aggey Semenov, Marcel Voia, Hashmat Khan, Patrick Coe, and Eric Kam as well as audience participants at the Meeting of the 53rd Annual Conference of the Canadian Economics Association (CEA), for useful comments which have improved the paper. The paper also benefited from the guidance of seminar participants at Carleton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Pourkarimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A.1 Proof of Proposition 1

$$ \begin{aligned}\pi_{i} &= \frac{{\left[ {\left( {2 - b} \right)\left( {k - \alpha } \right) - b\theta a_{i} - b\beta x_{i} + 2\left( {a_{i} + x_{i} } \right) + a_{j} \left( {2\theta - b} \right) + x_{j} \left( {2\beta - b} \right)} \right]^{2} }}{{\left( {4 - b^{2} } \right)^{2} }}\\&\quad - \frac{1}{2}\lambda a_{i}^{2} - \frac{1}{2}\gamma x_{i}^{2} \quad i,j = 1, 2\quad i \ne j.\end{aligned} $$
(A.1)

Taking the derivative of Eq. (A.1) with respect to own R&D and advertising and the competitor’s to evaluate the strategic interaction shows that:

  1. (1)

    \( \frac{{\partial^{2} \pi_{i} }}{{\partial x_{i} \partial x_{j} }} > 0 \) if \( \left( {2\beta - b} \right) > 0 \); otherwise, it is negative.

  2. (2)

    \( \frac{{\partial^{2} \pi_{i} }}{{\partial x_{i} \partial a_{j} }} > 0 \) if \( \left( {2\theta - b} \right) > 0 \); otherwise, it is negative.

  3. (3)

    \( \frac{{\partial^{2} \pi_{i} }}{{\partial a_{i} \partial x_{j} }} > 0 \) if \( \left( {2\beta - b} \right) > 0 \); otherwise, it is negative.

  4. (4)

    \( \frac{{\partial^{2} \pi_{i} }}{{\partial a_{i} \partial a_{j} }} > 0 \) if \( \left( {2\theta - b} \right) > 0 \); otherwise, it is negative.

A.2 Proof of Proposition 2

$$ \frac{{\partial X^{NN} }}{\partial \beta } = \frac{{4\lambda \left( {k - \alpha } \right)\left( {\left( {2\left( {2 - b\beta } \right)^{2} - 2b\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + b\gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)} \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.2)
$$ \frac{{ \partial a^{NN} }}{\partial \beta } = \frac{{8\gamma \left( {k - \alpha } \right)\left( {2 - b - 2b\beta } \right)\left( {2 - b\theta } \right)}}{{\left( {\gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} - 2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - 2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right)} \right)^{2} }} $$
(A.3)
$$ \frac{{\partial \pi^{NN} }}{\partial \beta } = \frac{\begin{aligned} & (4\gamma \lambda^{2} \left( {k - \alpha } \right)^{2} \left[ {2\gamma \left( {2 - b\theta } \right)\left( {4 + b\left( {b\theta \left( {1 + \beta } \right) - \beta \left( {4 + b} \right)} \right)} \right)} \right. \\ & \quad \left. { + 2\lambda \left( {2 - b\beta } \right)^{3} + \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} \left( {4 + b\left( {2 - b + \beta \left( {4 - b} \right)} \right)} \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{3} }} \qquad $$
(A.4)
$$ \frac{{ \partial Y^{NN} }}{\partial \beta } = \frac{{4\gamma \left( {4 - b^{2} } \right)\left( {k - \alpha } \right)\left( {2 - b - 2b\beta } \right)}}{{\left( {2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} + 2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right)} \right)^{2} }} $$
(A.5)
$$ \frac{{\partial W^{NN} }}{\partial \beta } = \frac{\begin{aligned} & 4\gamma \lambda^{2} \left( {k - \alpha } \right)^{2} \left[ {4\gamma \left( {2 - b\theta } \right)\left( {4 + b\left( {b\theta \left( {1 + \beta } \right) - \beta \left( {4 + b} \right)} \right)} \right) + 4\lambda \left( {2 - b\beta } \right)^{3} } \right. \\ & \quad \left. { - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} \left( {12 - b\left( {4 + b - b^{2} + 2\beta \left( {6 - b^{2} } \right)} \right)} \right)} \right] \\ \end{aligned} }{{2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} )^{3} }} $$
(A.6)
$$ p^{NN} = \frac{{2\alpha \gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2k\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \left( {4 - b^{2} } \right)\left( {k + \alpha + b\alpha } \right)} \right)}}{{2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} }} $$
(A.7)
$$ \frac{{\partial X^{RN} }}{\partial \beta } = \frac{{4\lambda \left( {2 - b} \right)\left( {k - \alpha } \right)\left[ {\lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} + \gamma \left( {2 + b} \right)^{2} } \right) - 2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right)} \right]}}{{(2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.8)
$$ \frac{{\partial a^{RN} }}{\partial \beta } = \frac{{16\gamma \left( {2 - b} \right)\left( {k - \alpha } \right)\left( {1 + \beta } \right)\left( {2 - b\theta } \right)}}{{\left( {\left( {2 - b} \right)\left[ {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right] - 2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right)} \right)^{2} }} $$
(A.9)
$$ \frac{{\partial \pi^{RN} }}{\partial \beta } = \frac{\begin{aligned} & 4\gamma \lambda^{2} \left( {2 - b} \right)\left( {k - \alpha } \right)^{2} \left( {1 + \beta } \right) \\ & \left[ {2\gamma \left( {2 + b} \right)\left( {1 - \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)^{2} \left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left[ {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right]} \right)^{3} }} $$
(A.10)
$$ \frac{{\partial Y^{RN} }}{\partial \beta } = \frac{{8\gamma \left( {2 - b} \right)^{2} \left( {2 + b} \right)\left( {k - \alpha } \right)\left( {1 + \beta } \right)}}{{\left( {\left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right) + 2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right)} \right)^{2} }} $$
(A.11)
$$ \frac{{\partial W^{RN} }}{\partial \beta } = \frac{\begin{aligned} & 8\gamma \lambda^{2} \left( {2 - b} \right)\left( {k - \alpha } \right)^{2} \left( {1 + \beta } \right) \\ & \left[ {2\lambda \left( {2 - b} \right)^{2} \left( {1 + \beta } \right)^{2} + \gamma \left( {2 + b} \right)\left( {2\left( {1 - \theta } \right)\left( {2 - b\theta } \right) - \lambda \left( {4 - b^{2} } \right)^{2} } \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.12)
$$ p^{RN} = \frac{{\left( {k - \alpha } \right)^{2} \gamma \lambda \left( {\lambda \left( {2 - b} \right)^{2} \left( {\gamma \left( {2 + b} \right)^{2} - 2\left( {1 + \beta } \right)^{2} } \right) - 2\gamma \left( {2 - b\theta } \right)^{2} } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.13)
$$ \frac{{\partial X^{NA} }}{\partial \beta } = \frac{{4\lambda \left( {k - \alpha } \right)\left( {2b\gamma \left( {2 - b} \right)\left( {1 + \theta } \right)^{2} + \lambda \left[ {2\left( {2 - b\beta } \right)^{2} - b\gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right]} \right)}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left[ {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right]} \right)^{2} }} $$
(A.14)
$$ \frac{{\partial a^{NA} }}{\partial \beta } = \frac{{8\gamma \left( {2 - b} \right)\left( {k - \alpha } \right)\left( {2 - b - 2b\beta } \right)\left( {1 + \theta } \right)}}{{\left( {2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.15)
$$ \frac{{\partial \pi^{NA} }}{\partial \beta } = \frac{{4\gamma \lambda^{2} \left( {k - \alpha } \right)^{2} \left( {2\lambda \left( {2 - b\beta } \right)^{3} + \gamma \left( {2 - b} \right)\left( {4 - b\left( {2 - b + \beta \left( {4 - b} \right)} \right)} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.16)
$$ \frac{{\partial Y^{NA} }}{\partial \beta } = \frac{{4\gamma \left( {4 - b^{2} } \right)\left( {k - \alpha } \right)\left( {2 - b - 2b\beta } \right)}}{{\left( {2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} + \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.17)
$$ \frac{{\partial W^{NA} }}{\partial \beta } = \frac{\begin{aligned} & 4\gamma \lambda^{2} \left( {k - \alpha } \right)^{2} \left( {4\lambda \left( {2 + b\beta } \right)^{3} + \gamma \left( {2 - b} \right)} \right. \\ & \left. {\left[ {4\left( {4 - b\left( {2 - b - \beta \left( {4 - b} \right)} \right)} \right)\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} \left( {12 - b\left( {4 + b - b^{2} + 2\beta \left( {6 - b^{2} } \right)} \right)} \right)} \right]} \right) \\ \end{aligned} }{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.18)
$$ p^{NA} = \frac{{\left( {2\alpha \gamma \left( {2 - b} \right)\left( {1 + \theta } \right)^{2} - \left( {2k\left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \left( {4 - b^{2} } \right)\left( {k + \alpha + b\alpha } \right)\gamma } \right)\lambda } \right)}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)}} $$
(A.19)
$$ \frac{{ \partial X^{RA} }}{\partial \beta } = \frac{{4\lambda \left( {k - \alpha } \right)\left( {2\lambda \left( {1 + \beta } \right)^{2} - 2\gamma \left( {1 + \theta } \right)^{2} + \gamma \lambda \left( {2 + b} \right)^{2} } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\lambda \left( {1 + \beta } \right)^{2} - \gamma \lambda \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.20)
$$ \frac{{\partial a^{RA} }}{\partial \beta } = \frac{{16\gamma \left( {k - \alpha } \right)\left( {1 + \beta } \right)\left( {1 + \theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \left( {2 + b} \right)^{2} \gamma } \right)^{2} }} $$
(A.21)
$$ \frac{{\partial \pi^{RA} }}{\partial \beta } = \frac{{4\gamma \left( {k - \alpha } \right)^{2} \left( {1 + \beta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.22)
$$ \frac{{\partial Y^{RA} }}{\partial \beta } = \frac{{8\gamma \left( {k - \alpha } \right)\left( {2 + b} \right)\left( {1 + \beta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \left( {2 + b} \right)^{2} \gamma } \right)^{2} }} $$
(A.23)
$$ \frac{{\partial W^{RA} }}{\partial \beta } = \frac{{8\gamma \lambda^{2} \left( {k - \alpha } \right)^{2} \left( {1 + \beta } \right)\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\lambda \left( {1 + \beta } \right)^{2} - \gamma \lambda \left( {2 + b} \right)^{3} } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\lambda \left( {1 + \beta } \right)^{2} - \gamma \lambda \left( {2 + b} \right)^{2} } \right)^{3} }} $$
(A.24)
$$ p^{RA} = \frac{{2\alpha \gamma \left( {1 + \theta } \right)^{2} + 2k\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)\left( {k + \alpha + b\alpha } \right)}}{{2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} }}. $$
(A.25)

Note that to simplify the analysis, \( \lambda \) is fixed at \( \lambda = 1 \) by assumption. Output is positive if \( k > \alpha \). Considering \( k = \alpha \;{\text{and}}\; \lambda = 1 \) and evaluating \( p \) at different parameter values indicates the validity of \( \gamma \) and shows that it meets the required thresholds where required.

Evaluating the above equations for any value of parameters shows that R&D spillovers have a positive impact on innovation, output, profit, and welfare when firms cooperate in R&D. Otherwise, the impact is positive if R&D spillovers are low enough.

A.3 Proof of Proposition 3

$$ \frac{{\partial X^{NN} }}{\partial \theta } = \frac{{8\gamma \left( {k - \alpha } \right)\left( {2 - b\beta } \right)\left( {2 - b - 2b\theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \left( {2 - b} \right)\left( {2 + b} \right)^{2} \gamma } \right)^{2} }} $$
(A.26)
$$ \frac{{\partial a^{NN} }}{\partial \theta } = \frac{{4\gamma \left( {k - \alpha } \right)\left( {2\gamma \left( {2 - b\theta } \right)^{2} + 2\lambda b\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - b\gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.27)
$$ \frac{{\partial \pi^{NN} }}{\partial \theta } = \frac{\begin{aligned} & 4\gamma^{2} \lambda \left( {k - \alpha } \right)^{2} \left[ {2\gamma \left( {2 - b\theta } \right)^{3} - \lambda \gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} \left( {4 - b\left( {2 - b + \theta \left( {4 - b} \right)} \right)} \right)} \right. \\ & \left. { + 2\lambda \left( {2 - b\beta } \right)\left( {4 - 4b\theta + b^{2} \left( {\beta - \theta \left( {1 - \beta } \right)} \right)} \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{3} }} $$
(A.28)
$$ \frac{{\partial Y^{NN} }}{\partial \theta } = \frac{{4\gamma^{2} \left( {4 - b^{2} } \right)\left( {k - \alpha } \right)\left( {2 - b - 2b\theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.29)
$$ \frac{{\partial W^{NN} }}{\partial \theta } = \frac{\begin{aligned} & 4\gamma^{2} \lambda \left( {k - \alpha } \right)^{2} \left[ {4\gamma \left( {2 - b\theta } \right)^{3} - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} \left( {12 - b\left( {4 + b - b^{2} - 2\theta \left( {6 - b^{2} } \right)} \right)} \right)} \right. \\ & \quad \left. { + 4\lambda \left( {2 - b\beta } \right)\left( {4 - 4b\theta + b^{2} \left( {\beta - \theta \left( {1 - \beta } \right)} \right)} \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) - \gamma \lambda \left( {2 - b} \right)\left( {2 + b} \right)^{2} } \right)^{3} }} $$
(A.30)
$$ \frac{{\partial X^{RN} }}{\partial \theta } = \frac{{8\gamma \left( {2 - b} \right)\left( {k - \alpha } \right)\left( {1 + \beta } \right)\left( {2 - b - 2b\theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} + \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.31)
$$ \frac{{\partial a^{RN} }}{\partial \theta } = \frac{{4\gamma \left( {k - \alpha } \right)\left( {2\gamma \left( {2 - b\theta } \right)^{2} + \lambda b\left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.32)
$$ \frac{{\partial \pi^{RN} }}{\partial \theta } = \frac{{4\gamma^{2} \lambda \left( {k - \alpha } \right)^{2} \left[ {2\gamma \left( {2 - b\theta } \right)^{3} + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)\left( {4 - b\left( {2 - b - \theta \left( {4 - b} \right)} \right)} \right)} \right]}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.33)
$$ \frac{{\partial Y^{RN} }}{\partial \theta } = \frac{{4\gamma^{2} \left( {4 - b^{2} } \right)\left( {k - \alpha } \right)\left( {2 - b - 2b\theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.34)
$$ \frac{{\partial W^{RN} }}{\partial \theta } = \frac{\begin{aligned} & 4\gamma^{2} \lambda \left( {k - \alpha } \right)^{2} \left[ {4\gamma \left( {2 - b\theta } \right)^{3} + 4\lambda \left( {2 - b} \right)\left( {1 + \beta } \right)^{2} \left( {4 - b\left( {2 - b + \theta \left( {4 - b} \right)} \right)} \right)} \right. \\ & \quad \left. { - \lambda \gamma \left( {2 - b} \right)\left( {2 + b} \right)^{2} \left( {12 - b\left( {4 + b - b^{2} - 2\theta \left( {6 - b^{2} } \right)} \right)} \right)} \right] \\ \end{aligned} }{{\left( {2\gamma \left( {1 + \theta } \right)\left( {2 - b\theta } \right) + \lambda \left( {2 - b} \right)\left( {2\left( {1 + \beta } \right)^{2} - \left( {2 + b} \right)^{2} \gamma } \right)} \right)^{3} }} $$
(A.35)
$$ \frac{{\partial X^{NA} }}{\partial \theta } = \frac{{16\gamma \left( {2 - b} \right)\left( {k - \alpha } \right)\left( {2 - b\beta } \right)\left( {1 + \theta } \right)}}{{\left( {2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.36)
$$ \frac{{\partial a^{NA} }}{\partial \theta } = \frac{{4\gamma \left( {2 - b} \right)\left( {k - \alpha } \right)\left( {\gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} + \lambda \left( {2 + b} \right)^{2} } \right) - 2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right)} \right)}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.37)
$$ \frac{{\partial \pi^{NA} }}{\partial \theta } = \frac{{4\gamma^{2} \lambda \left( {2 - b} \right)\left( {k - \alpha } \right)^{2} [\left( {1 + \theta } \right)\left( {2\lambda \left( {2 + b} \right)\left( {1 - \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)^{2} \left( {\lambda \left( {2 + b} \right)^{2} - 2\left( {1 + \theta } \right)^{2} } \right)} \right]}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.38)
$$ \frac{{\partial Y^{NA} }}{\partial \theta } = \frac{{8\gamma^{2} \left( {k - \alpha } \right)\left( {1 + \theta } \right)\left( {2 - b} \right)^{2} \left( {2 + b} \right)}}{{\left( {2\left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \left( {2 + b} \right)^{2} } \right)} \right)^{2} }} $$
(A.39)
$$ \frac{{\partial W^{NA} }}{\partial \theta } = \frac{{8\gamma^{2} \lambda \left( {2 - b} \right)\left( {k - \alpha } \right)^{2} \left( {1 + \theta } \right)\left[ {2\lambda \left( {2 + b} \right)\left( {1 - \beta } \right)\left( {2 - b\beta } \right) - \gamma \left( {2 - b} \right)^{2} \left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{3} } \right)} \right]}}{{\left( {2\lambda \left( {1 + \beta } \right)\left( {2 - b\beta } \right) + \gamma \left( {2 - b} \right)\left( {2\left( {1 + \theta } \right)^{2} - \lambda \left( {2 + b} \right)^{2} } \right)} \right)^{3} }} $$
(A.40)
$$ \frac{{\partial X^{RA} }}{\partial \theta } = \frac{{16\left( {k - \alpha } \right)\left( {1 + \beta } \right)\gamma \left( {1 + \theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.41)
$$ \frac{{\partial a^{RA} }}{\partial \theta } = \frac{{4\gamma \left( {k - \alpha } \right)\left( {2\gamma \left( {1 + \theta } \right)^{2} - 2\left( {1 + \beta } \right)^{2} \lambda + \left( {2 + b} \right)^{2} \gamma \lambda } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} \lambda - \left( {2 + b} \right)^{2} \gamma \lambda } \right)^{2} }} $$
(A.42)
$$ \frac{{\partial \pi^{RA} }}{\partial \theta } = \frac{{4\gamma^{2} \left( {k - \alpha } \right)^{2} \left( {1 + \theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.43)
$$ \frac{{\partial Y^{NA} }}{\partial \theta } = \frac{{8\gamma^{2} \left( {2 + b} \right)\left( {k - \alpha } \right)\left( {1 + \theta } \right)}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\left( {1 + \beta } \right)^{2} - \gamma \left( {2 + b} \right)^{2} } \right)^{2} }} $$
(A.44)
$$ \frac{{\partial W^{RA} }}{\partial \theta } = \frac{{8\gamma^{2} \lambda \left( {k - \alpha } \right)^{2} \left( {1 + \theta } \right)\left[ {2\gamma \left( {1 + \theta } \right)^{2} + 2\lambda \left( {1 + \beta } \right)^{2} - \gamma \lambda \left( {2 + b} \right)^{3} } \right]}}{{\left( {2\gamma \left( {1 + \theta } \right)^{2} + 2\lambda \left( {1 + \beta } \right)^{2} - \gamma \lambda \left( {2 + b} \right)^{2} } \right)^{3} }}. $$
(A.45)

Evaluating the above equations for any value of parameters shows that advertising spillovers have a positive impact on innovation, output, profit, and welfare when firms cooperate in advertising. Otherwise, the impact is positive if advertising spillovers are low enough.

A.4 Proof of Proposition 4

Section 3 provides the formula for \( x_{i} \), \( \pi_{i} \), and \( W \) as a function of other parameters. Taking the deduction of each pair of equations shows that for any parameter set that yields a valid price value (\( p > 0 \)) the following holds.

  1. (1)

    If \( b = \beta = 0 \) and \( \theta < 0 \), then \( X_{NN} = X_{RN} > X_{NA} = X_{RA} \), \( \pi_{NN} = \pi_{RN} > \pi_{NA} = \pi_{RA} \), and \( W_{NN} = W_{RN} > W_{NA} = W_{RA} \)

  2. (2)

    If \( b = 0 \), \( 0 < \beta < 0.1 \), and \( \theta < 0, \) then \( X_{RN} > X_{NN} > X_{RA} > X_{NA} \) and \( W_{RN} > W_{NN} > W_{RA} > W_{NA} \).

  3. (3)

    If \( b = 0 \) and \( \beta > 0.1, \) and \( \theta < 0, \) then \( X_{RN} > X_{RA} > X_{NN} > X_{NA} \) and \( W_{RN} > W_{RA} > W_{NN} > W_{NA} \).

  4. (4)

    \( X_{NA} > X_{RA} \) if \( \theta < - b/2 \) and \( \beta < b/2 \)

  5. (5)

    \( X_{RN} > X_{NA} \) if \( \theta < - b/2 \) and \( \beta < b/2 \)

  6. (6)

    \( X_{RA} > X_{RN} \) if \( \theta > b/2 \)

  7. (7)

    \( X_{NA} > X_{NN} \) if \( \theta > b/2 \)

  8. (8)

    \( X_{RN} > X_{NN} \) if \( \beta > b/2 \)

  9. (9)

    \( X_{RN} > X_{NA} \) if \( \theta < \beta \)

  10. (10)

    \( X_{NA} > X_{RA} \) if \( \theta < b/2 \) and \( \beta < b/2 \)

  11. (11)

    \( X_{NN} > X_{RA} \) if \( \theta < b/2 \) and \( \beta < b/2 \)

  12. (12)

    \( \pi_{RA} > \pi_{NA} > \pi_{RN} > \pi_{NN} \) if \( \beta \ne 0 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourkarimi, P., Atallah, G. The Impact of Cooperative R&D and Advertising on Innovation and Welfare. J. Quant. Econ. 18, 143–167 (2020). https://doi.org/10.1007/s40953-019-00176-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40953-019-00176-w

Keywords

JEL Classification

Navigation