Skip to main content
Log in

Mixing and spreading of multiphase fluids in heterogeneous bimodal porous media

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

We investigate the impact of heterogeneous bimodal porous media on fluid mixing and spreading in viscously-unstable flows. Previous studies have mostly studied miscible mixing and spreading behavior in unimodal media. We characterize the temporal evolution of these processes in bimodal media and under both miscible and partially miscible conditions. We model advection-diffusion transport of a finite volume of \(\hbox {CO}_2\) diluting within a rectilinear background flow of a multicomponent compressible hydrocarbon fluid. Accurate numerical simulations are performed to capture the details of hydrodynamic instabilities as well as the heterogeneity channelling. Thermodynamic phase behavior and Fickian diffusion are represented based on rigorous equation of state. We generate by means of a Markov Chain approach the permeability fields that represent facies architecture by volume fractions of each facies unit. Our results show that bimodal media significantly alter the flow pattern and spreading dynamics, especially at lower proportions of the high-permeability facies. However, we find the miscible mixing to be less sensitive to bimodal media, as a result of a delicate balance between fingering and permeability channeling. On other hand, spreading is usually lower in partially miscible flows, but this can be overridden by channeling due to bimodal media. The new hydrothermodynamic mechanisms that predominantly drive most of the mixing in partially miscible systems are still in effect even in bimodal media regardless of the facies architecture. Therefore, partially miscible mixing is negligibly impacted by bimodal heterogeneity. Our qualitative and quantitative results elucidate the key flow processes resulting from bimodal structures, and also rationalize the distinct mixing and spreading behaviors that emerge differently from the interplay between hydrothermodynamic mechanisms and flow channeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amooie MA, Soltanian MR, Moortgat J (2017) Hydrothermodynamic mixing of fluids across phases in porous media. Geophys Res Lett. doi:10.1002/2016GL072491

    Google Scholar 

  • Arabloo M, Amooie MA, Hemmati-Sarapardeh A, Ghazanfari MH, Mohammadi AH (2014) Application of constrained multi-variable search methods for prediction of PVT properties of crude oil systems. Fluid Phase Equilib 363:121–130

    Article  Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond A 235(1200):67–77. doi:10.1098/rspa.1956.0065

    Article  Google Scholar 

  • Baker LE, Pierce AC, Luks KD (1982) Gibbs energy analysis of phase equilibria. Soc Petrol Eng J 22(05):731–742

    Article  Google Scholar 

  • Barros FP, Dentz M, Koch J, Nowak W (2012) Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys Res Lett 39(8):L08404

    Article  Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44(2):RG2003. doi:10.1029/2005RG000178

    Article  Google Scholar 

  • Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl Geophys 160:937–960. doi:10.1007/PL00012574

    Article  Google Scholar 

  • Bijeljic B, Rubin S, Scher H, Berkowitz B (2011) Non-Fickian transport in porous media with bimodal structural heterogeneity. J Contam Hydrol 120:213–221

    Article  Google Scholar 

  • Blackwell R, Rayne J, Terry W (1959) Factors influencing the efficiency of miscible displacement. Petrol Trans AIME 217:1–8

    Google Scholar 

  • Boulding JR (1996) EPA environmental assessment sourcebook. CRC Press, Boca Raton

    Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476

    Article  MathSciNet  MATH  Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Math Geol 29(7):891–918

    Article  Google Scholar 

  • Chen CY, Huang YC, Huang YS, Miranda JA (2015) Enhanced mixing via alternating injection in radial Hele-Shaw flows. Phys Rev E 92:043008. doi:10.1103/PhysRevE.92.043008

    Article  Google Scholar 

  • Chiogna G, Cirpka OA, Grathwohl P, Rolle M (2011) Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media. Water Resour Res 47(7):W07540

    Article  Google Scholar 

  • Chiogna G, Hochstetler DL, Bellin A, Kitanidis PK, Rolle M (2012) Mixing, entropy and reactive solute transport. Geophys Res Lett 39(20):L20405

    Article  Google Scholar 

  • Cirpka OA, Kitanidis PK (2000) Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour Res 36(5):1221–1236

    Article  Google Scholar 

  • Cueto-Felgueroso L, Juanes R (2008) Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys Rev Lett 101(24):244504

    Article  Google Scholar 

  • Dagan G (2012) Flow and transport in porous formations. Springer, New York

    Google Scholar 

  • Dai Z, Ritzi RW, Huang C, Rubin YN, Dominic DF (2004) Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. J Hydrol 294(1):68–86

    Article  Google Scholar 

  • Danckwerts P (1952) The definition and measurement of some characteristics of mixtures. Appl Sci Res Sect A 3(4):279–296

    Article  Google Scholar 

  • Deng H, Stauffer PH, Dai Z, Jiao Z, Surdam RC (2012) Simulation of industrial-scale \(\text{CO}_2\) storage: multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Int J Greenh Gas Control 10:397–418

    Article  Google Scholar 

  • Desbarats AJ (1987) Numerical estimation of effective permeability in sand-shale formations. Water Resour Res 23(2):273–286

    Article  Google Scholar 

  • De Marsily G, Delay F, Goncalves J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13(1):161–183

    Google Scholar 

  • De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A (2005) A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 41(11):W11410

    Article  Google Scholar 

  • De Simoni M, Sanchez-Vila X, Carrera J, Saaltink M (2007) A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 43(7):W07419

    Article  Google Scholar 

  • De Wit A, Homsy G (1997) Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations. J Chem Phys 107(22):9619–9628

    Article  Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20(2):299–311

    Article  Google Scholar 

  • Engdahl NB, Vogler ET, Weissmann GS (2010) Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework. Water Resour Res 46(1):W01506

    Article  Google Scholar 

  • Fiori A, Dagan G (2003) Time-dependent transport in heterogeneous formations of bimodal structures: 2. Results. Water Resour Res 39(5):1125

    Google Scholar 

  • Firoozabadi A (2015) Thermodynamics and applications of hydrocarbon energy production. McGraw-Hill, New York

    Google Scholar 

  • Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gelhar LW, Gutjahr AL, Naff RL (1979) Stochastic analysis of macrodispersion in a stratified aquifer. Water Resour Res 15(6):1387–1397

    Article  Google Scholar 

  • Gershenzon NI, Ritzi RW, Dominic DF, Soltanian M, Mehnert E, Okwen RT (2015) Influence of small-scale fluvial architecture on \(\text{CO}_2\) trapping processes in deep brine reservoirs. Water Resour Res 51(10):8240–8256

    Article  Google Scholar 

  • Gershenzon NI, Soltanian M, Ritzi RW, Dominic DF (2014) Influence of small scale heterogeneity on \(\text{CO}_2\) trapping processes in deep saline aquifers. Energy Procedia 59:166–173

    Article  Google Scholar 

  • Ghorayeb K, Firoozabadi A (2000) Modeling multicomponent diffusion and convection in porous media. Soc Pet Eng J  5(02):158–171

    Article  Google Scholar 

  • Ginn T, Simmons C, Wood B (1995) Stochastic-convective transport with nonlinear reaction: biodegradation with microbial growth. Water Resour Res 31(11):2689–2700

    Article  Google Scholar 

  • Habermann B (1960) The efficiency of miscible displacement as a function of mobility ratio. Petrol Trans AIME 219:264–272

    Google Scholar 

  • Haitjema HM, Anderson MP (2016) Darcy velocity is not a velocity. Groundwater 54(1):1–1

    Article  Google Scholar 

  • Hidalgo JJ, Dentz M, Cabeza Y, Carrera J (2015) Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys Res Lett 42(15):6357–6364

    Article  Google Scholar 

  • Hoeksema RJ, Kitanidis PK (1984) An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling. Water Resour Res 20(7):1003–1020

    Article  Google Scholar 

  • Homsy GM (1987) Viscous fingering in porous media. Annu Rev Fluid Mech 19(1):271–311

    Article  Google Scholar 

  • Jha RK, John AK, Bryant SL, Lake LW (2009) Flow reversal and mixing. Soc Petrol Eng J 14(01):41–49

    Google Scholar 

  • Jha RK, Bryant S, Lake LW (2011a) Effect of diffusion on dispersion. Soc Petrol Eng J 16(01):65–77

    Google Scholar 

  • Jha B, Cueto-Felgueroso L, Juanes R (2011b) Fluid mixing from viscous fingering. Phys Rev Lett 106(19):194502

    Article  Google Scholar 

  • Jha B, Cueto-Felgueroso L, Juanes R (2011c) Quantifying mixing in viscously unstable porous media flows. Phys Rev E 84(6):066312

    Article  Google Scholar 

  • Jha B, Cueto-Felgueroso L, Juanes R (2013) Synergetic fluid mixing from viscous fingering and alternating injection. Phys Rev Lett 111(14):144501

    Article  Google Scholar 

  • Jiménez-Martínez J, Anna Pd, Tabuteau H, Turuban R, Borgne TL, Méheust Y (2015) Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions. Geophys Res Lett 42(13):5316–5324

    Article  Google Scholar 

  • Jiménez-Martínez J, Porter ML, Hyman JD, Carey JW, Viswanathan HS (2016) Mixing in a three-phase system: enhanced production of oil-wet reservoirs by \(\text{CO}_2\) injection. Geophys Res Lett 43(1):196–205

    Article  Google Scholar 

  • Kapoor V, Kitanidis PK (1998) Concentration fluctuations and dilution in aquifers. Water Resour Res 34(5):1181–1193

    Article  Google Scholar 

  • Kitanidis PK (1988) Prediction by the method of moments of transport in a heterogeneous formation. J Hydrol 102(1):453–473

    Article  Google Scholar 

  • Kitanidis PK (1994) The concept of the dilution index. Water Resour Res 30(7):2011–2026. doi:10.1029/94WR00762

    Article  Google Scholar 

  • Le Borgne T, Gouze P (2008) Non-Fickian dispersion in porous media: 2. Model validation from measurements at different scales. Water Resour Res 44:W06427. doi:10.1029/2007WR006279

    Google Scholar 

  • Le Borgne T, Dentz M, Carrera J (2008) Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys Rev Lett 101(9):090601

    Article  Google Scholar 

  • Le Borgne T, Dentz M, Bolster D, Carrera J, De Dreuzy JR, Davy P (2010) Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv Water Resour 33(12):1468–1475

    Article  Google Scholar 

  • Le Borgne T, Dentz M, Davy P, Bolster D, Carrera J, De Dreuzy JR, Bour O (2011) Persistence of incomplete mixing: a key to anomalous transport. Phys Rev E 84(1):015301

    Article  Google Scholar 

  • Le Borgne T, Dentz M, Villermaux E (2015) The lamellar description of mixing in porous media. J Fluid Mech 770:458–498

    Article  MathSciNet  Google Scholar 

  • Leahy-Dios A, Firoozabadi A (2007) Unified model for nonideal multicomponent molecular diffusion coefficients. AIChE J 53(11):2932–2939

    Article  Google Scholar 

  • Logan S (1998) The behavior of a pair of partially miscible liquids. J Chem Educ 75(3):339

    Article  Google Scholar 

  • Lu Z, Zhang D (2002) On stochastic modeling of flow in multimodal heterogeneous formations. Water Resour Res 38(10):1190

    Article  Google Scholar 

  • Lévy, M (2008) The modulation of biological production by oceanic mesoscale turbulence. In: Weiss JB, Provenzale A (eds) Transport and mixing in geophysical flows. Springer, Berlin, pp 219–261

    Chapter  Google Scholar 

  • MacQuarrie K, Sudicky E (1990) Simulation of biodegradable organic contaminants in groundwater: 2. Plume behavior in uniform and random flow fields. Water Resour Res 26(2):223–239

    Google Scholar 

  • Massabó M, Bellin A, Valocchi A (2008) Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution. Water Resour Res 44(9):W09424

    Article  Google Scholar 

  • Mishra M, Martin M, De Wit A (2008) Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys Rev E 78(6):066306

    Article  Google Scholar 

  • Moortgat J (2016) Viscous and gravitational fingering in multiphase compositional and compressible flow. Adv Water Resour 89:53–66

    Article  Google Scholar 

  • Moortgat J, Firoozabadi A (2010) Higher-order compositional modeling with Fickian diffusion in unstructured and anisotropic media. Adv Water Resour 33(9):951–968

    Article  Google Scholar 

  • Moortgat J, Firoozabadi A (2013a) Fickian diffusion in discrete-fractured media from chemical potential gradients and comparison to experiment. Energy Fuels 27(10):5793–5805

    Article  Google Scholar 

  • Moortgat J, Firoozabadi A (2013b) Three-phase compositional modeling with capillarity in heterogeneous and fractured media. Soc Petrol Eng J 18(06):1150–1168

    Article  MATH  Google Scholar 

  • Moortgat J, Sun S, Firoozabadi A (2011) Compositional modeling of three-phase flow with gravity using higher-order finite element methods. Water Resour Res 47(5):W05511

    Article  Google Scholar 

  • Moortgat J, Li Z, Firoozabadi A (2012) Three-phase compositional modeling of \(\hbox {CO}_2\) injection by higher-order finite element methods with CPA equation of state for aqueous phase. Water Resour Res 48(12):W12511

    Article  Google Scholar 

  • Moortgat J, Amooie MA, Soltanian MR (2016) Implicit finite volume and discontinuous galerkin methods for multicomponent flow in unstructured 3D fractured porous media. Adv Water Resour 96:389–404

    Article  Google Scholar 

  • Neuman SP, Di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41(3):1014

    Article  Google Scholar 

  • Nicolaides C, Jha B, Cueto-Felgueroso L, Juanes R (2015) Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media. Water Resour Res 51(4):2634–2647

    Article  Google Scholar 

  • Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pedersen KS, Christensen PL, Shaikh JA (2014) Phase behavior of petroleum reservoir fluids. CRC Press, Boca Raton

    Google Scholar 

  • Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64

    Article  Google Scholar 

  • Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pryshlak TT, Sawyer AH, Stonedahl SH, Soltanian MR (2015) Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resour Res 51(11):9127–9140

    Article  Google Scholar 

  • Ritzi RW (2000) Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381

    Article  Google Scholar 

  • Ritzi RW, Allen-King RM (2007) Why did Sudicky [1986] find an exponential-like spatial correlation structure for hydraulic conductivity at the borden research site? Water Resour Res 43(1):W01406

    Article  Google Scholar 

  • Ritzi RW, Soltanian MR (2015) What have we learned from deterministic geostatistics at highly resolved field sites, as relevant to mass transport processes in sedimentary aquifers? J Hydrol 531:31–39

    Article  Google Scholar 

  • Rolle M, Eberhardt C, Chiogna G, Cirpka OA, Grathwohl P (2009) Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation. J Contam Hydrol 110(3):130–142

    Article  Google Scholar 

  • Rubin Y (1995) Flow and transport in bimodal heterogeneous formations. Water Resour Res 31(10):2461–2468

    Article  Google Scholar 

  • Sajjadi M, Azaiez J (2013) Scaling and unified characterization of flow instabilities in layered heterogeneous porous media. Phys Rev E 88(3):033017

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW (2014) A new method for analysis of variance of the hydraulic and reactive attributes of aquifers as linked to hierarchical and multiscaled sedimentary architecture. Water Resour Res 50(12):9766–9776

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Dai Z, Huang CC (2015a) Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach. Chemosphere 122:235–244

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Huang CC, Dai Z (2015b) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. Time-dependent effective retardation factor. Water Resour Res 51(3):1586–1600

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Huang CC, Dai Z (2015c) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance. Water Resour Res 51(3):1601–1618

    Article  Google Scholar 

  • Soltanian MR, Amooie MA, Cole DR, Graham DE, Hosseini SA, Hovorka S, Pfiffner SM, Phelps TJ, Moortgat J (2016a) Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int J Greenh Gas Control 54 Part 1:282–296

    Article  Google Scholar 

  • Soltanian MR, Amooie MA, Dai Z, Cole D, Moortgat J (2016b) Critical dynamics of gravito-convective mixing in geological carbon sequestration. Sci Rep 6:35921

    Article  Google Scholar 

  • Soltanian MR, Dai Z, Yang C, Amooie MA, Moortgat J (2017a) Multicomponent competitive monovalent cation exchange in hierarchical porous media with multimodal reactive mineral facies. Stoch Environ Res Risk Assess. doi:10.1007/s00477-017-1379-y

    Google Scholar 

  • Soltanian MR, Sun A, Dai Z (2017b) Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada. Chemosphere. doi:10.1016/j.chemosphere.2017.03.136

    Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    Article  Google Scholar 

  • Taghvaei H, Amooie MA, Hemmati-Sarapardeh A, Taghvaei H (2016) A comprehensive study of phase equilibria in binary mixtures of carbon dioxide+ alcohols: application of a hybrid intelligent model (CSA-LSSVM). J Mol Liq 224:745–756

    Article  Google Scholar 

  • Tan CT, Homsy G (1992) Viscous fingering with permeability heterogeneity. Phys Fluids A 4(6):1099–1101

    Article  Google Scholar 

  • Tchelepi H, Orr F Jr, Rakotomalala N, Salin D, Woumeni R (1993) Dispersion, permeability heterogeneity, and viscous fingering: acoustic experimental observations and particle-tracking simulations. Phys Fluids A 5(7):1558–1574

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    MATH  Google Scholar 

  • Welty C, Gelhar LW (1991) Stochastic analysis of the effects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media. Water Resour Res 27(8):2061–2075

    Article  Google Scholar 

  • Yang C, Hovorka SD, Young MH, Trevino R (2014a) Geochemical sensitivity to \(\text{CO}_2\) leakage: detection in potable aquifers at carbon sequestration sites. Greenh Gases Sci Technol 4(3):384–399

    Article  Google Scholar 

  • Yang C, Treviño RH, Zhang T, Romanak KD, Wallace K, Lu J, Mickler PJ, Hovorka SD (2014b) Regional assessment of \(\text{CO}_2\)-solubility trapping potential: a case study of the coastal and offshore texas miocene interval. Environ Sci Technol 48(14):8275–8282

    Article  Google Scholar 

  • Yang C, Hovorka SD, Treviño RH, Delgado-Alonso J (2015a) Integrated framework for assessing impacts of \(\text{CO}_2\) leakage on groundwater quality and monitoring-network efficiency: case study at a \(\text{CO}_2\) enhanced oil recovery site. Environ Sci Technol 49(14):8887–8898

    Article  Google Scholar 

  • Yang C, Treviño RH, Hovorka SD, Delgado-Alonso J (2015b) Semi-analytical approach to reactive transport of \(\text{CO}_2\) leakage into aquifers at carbon sequestration sites. Greenh Gases Sci Technol 5(6):786–801

    Article  Google Scholar 

  • Zarlenga A, Fiori A (2015) Advective transport through three-dimensional anisotropic formations of bimodal hydraulic conductivity. Transp Porous Media 107(2):573–593

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author was supported by the U. S. Department6 of Energy’s (DOE) Office of Fossil Energy funding to Oak Ridge National Laboratory (ORNL) under project FEAA-045. ORNL is managed by UT-Battelle for the U.S. DOE under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Moortgat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amooie, M.A., Soltanian, M.R., Xiong, F. et al. Mixing and spreading of multiphase fluids in heterogeneous bimodal porous media. Geomech. Geophys. Geo-energ. Geo-resour. 3, 225–244 (2017). https://doi.org/10.1007/s40948-017-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40948-017-0060-8

Keywords

Navigation