Skip to main content

Advertisement

Log in

Internal Validation of a Predictive Model for Overall Survival in Patients with FIGO stages I–IV Cervical Cancer

  • Original Article
  • Published:
Indian Journal of Gynecologic Oncology Aims and scope Submit manuscript

Abstract

Purpose

To identify prognostic factors and to achieve the internal validation of a predictive model for overall survival in patients with cervical cancer at any stage.

Methods

A prospective cohort study was conducted between January 2010 and January 2019 on 229 women with cervical cancer. We performed a survival analysis using the Kaplan–Meier method and log-rank test, and, finally, developed a Cox model.

Results

Overall survival was 41 (IQR = 57.5) months (R = 1–264), with a cancer-specific mortality rate of 26.2%. We found significant differences in the median overall survival between the early and the locally advanced stages (43 versus 11 months, P = 0.001) and between the early and the advanced stages (40 versus 11 months, P = 0.003). There were no significant differences in the 5-year overall survival between the monotherapy based on types B and C2 radical hysterectomy (P = 0.1) and between the radical and the extrafascial hysterectomy (P = 0.2). Regarding the surgical approach for type B radical and total extrafascial hysterectomy, we could not study differences between laparotomic and laparoscopic routes due to a lack of enough amount of power. We developed a model with a Harrell´s concordance index of 0.87. The predictors of the model were primary surgery, maximum tumor diameter, and type of therapeutic response.

Conclusion

The cancer-specific mortality rate was 26.2%. We developed a model that, once statistical power was increased and externally validated, might provide useful prognostic information for both patients and oncologists at first consultation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to the fact that their containing information could compromise the privacy of research participants.

Code Availability

Not applicable.

Abbreviations

ACC:

Advanced cervical cancer

BMI:

Body mass index

CC:

Cervical cancer

CI:

Confidence interval

C-index:

Harrell´s concordance index

C-section:

Cesarean section

DF:

Degrees of freedom

DSI:

Deep stromal invasion

ECC:

Early cervical cancer

ECOG:

Eastern Cooperative Oncology Group

EE:

Error estimate

Exp(βn):

Relative risk

FIGO:

International Federation of Gynecology and Obstetrics

GR:

Grade of recommendation

HPV:

Human papillomavirus

HR:

High-risk

IQR:

Interquartile range

LACC:

Laparoscopic approach to cervical cancer

LCC:

Locally advanced cervical cancer

LE:

Level of evidence

LHR:

Likelihood ratio

LVI:

Lymphovascular invasion

Me :

Median

MLN:

Metastatic lymph node

MPALN:

Metastatic para-aortic lymph node

MPLN:

Metastatic pelvic lymph node

MTD:

Maximum tumor diameter

N:

Sample size

NA:

Not available

NCI:

National Cancer Institute

OS:

Overall survival

PAL:

Para-aortic lymphadenectomy

PI:

Parametrial invasion

PL:

Pelvic lymphadenectomy

PS:

Performance status

R:

Range

RFS:

Recurrence-free survival

RH:

Radical hysterectomy

SD:

Standard deviation

SEER:

Surveillance, Epidemiology, and End Results

SIGN:

Scottish Intercollegiate Guidelines Network

SLNB:

Sentinel lymph node biopsy

:

Arithmetic mean

TEH:

Total extrafascial hysterectomy

VIF:

Variance inflation factor

Z-value:

Test de Wald

βn :

Predictor regression coefficient

References

  1. Instituto de Salud Carlos III [Internet]. Madrid: ISCIII; c2019. Ariadna; [cited on October 28th, 2022]. Available in: http://www.ariadna.cne.isciii.es

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  3. Wang W, Liu X, Meng Q, Zhang F, Hu K. Nomograms predicting survival and patterns of failure in patients with cervical cancer treated with concurrent chemoradiotherapy: a special focus on lymph nodes metastases. PLoS One. 2019;14(4):e0214498. DOI: https://doi.org/10.1371/journal.pone.0214498

  4. Yan DD, Tang Q, Chen JH, Tu YQ, Lv XJ. Prognostic value of the 2018 FIGO staging system for cervical cancer patients with surgical risk factors. Cancer Manag Res. 2019;11:5473–80. https://doi.org/10.2147/CMAR.S203059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kilic C, Cakir C, Yuksel D, et al. Which factors predict parametrial involvement in early stage cervical cancer? A Turkish multicenter study. Eur J Obstet Gynecol Reprod Biol. 2019;243:63–6. https://doi.org/10.1016/j.ejogrb.2019.10.033.

    Article  PubMed  Google Scholar 

  6. Hsu HC, Tai YJ, Chen YL, Chiang YC, Chen CA, Cheng WF. Factors predicting parametrial invasion in patients with early-stage cervical carcinomas. PLoS One. 2018;13(10):e0204950. https://doi.org/10.1371/journal.pone.0204950

  7. Matsuo K, Shimada M, Nakamura K, et al. Predictors for pathological parametrial invasion in clinical stage IIB cervical cancer. Eur J Surg Oncol. 2019;45(8):1417–24. https://doi.org/10.1016/j.ejso.2019.02.019.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Queiroz ACM, Fabri V, Mantoan H, et al. Risk factors for pelvic and distant recurrence in locally advanced cervical cancer. J Obstet Gynecol Reprod Biol. 2019;235:6–12. https://doi.org/10.1016/j.ejogrb.2019.01.028.

    Article  Google Scholar 

  9. Hellebrekers BW, Zwinderman AH, Kenter GG, et al. Surgically treated early cervical cancer: prognostic factors and the significance of depth of tumor invasion. Int J Gynecol Cancer. 1999;9(3):212–9. https://doi.org/10.1046/j.1525-1438.1999.99023.x.

    Article  PubMed  Google Scholar 

  10. Sun H, Cao D, Shen K, et al. Piver type II vs. type III hysterectomy in the treatment of early-stage cervical cancer: midterm follow-up results of a randomized controlled trial. Front Oncol. 2018;8:568–79. https://doi.org/10.3389/fonc.2018.00568

  11. Wang YZ, Deng L, Xu HC, Zhang Y, Liang ZQ. Laparoscopy versus laparotomy for the management of early stage cervical cancer. BMC Cancer. 2015;15:928. https://doi.org/10.1186/s12885-015-1818-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cao T, Feng Y, Huang Q, Wan T, Liu J. Prognostic and safety roles in laparoscopic versus abdominal radical hysterectomy in cervical cancer: a meta-analysis. J Laparoendosc Adv Surg Tech A. 2015;25(12):990–8. https://doi.org/10.1089/lap.2015.0390.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Laterza RM, Uccella S, Casarin J, et al. Recurrence of early stage cervical cancer after laparoscopic versus open radical surgery. Int J Gynecol Cancer. 2016;3:547–52. https://doi.org/10.1097/IGC.0000000000000627.

    Article  Google Scholar 

  14. Mendivil AA, Rettenmaier MA, Abaid LN, et al. Survival rate comparisons amongst cervical cancer patients treated with an open, robotic-assisted or laparoscopic radical hysterectomy: a five year experience. Surg Oncol. 2016;25(1):66–71. https://doi.org/10.1016/j.suronc.2015.09.004.

    Article  PubMed  Google Scholar 

  15. Ramírez PT, Frumovitz M, Pareja R, et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med. 2018;379(20):1895–904. https://doi.org/10.1056/NEJMoa1806395.

    Article  PubMed  Google Scholar 

  16. Melamed A, Rauh-Hain JA, Ramírez PT. Minimally invasive radical hysterectomy for cervical cancer: when adoption of a novel treatment precedes prospective, randomized evidence. J Clin Oncol. 2019;37(33):3069–74. https://doi.org/10.1200/JCO.19.01164.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim JH, Kim K, Park SJ, et al. Comparative effectiveness of abdominal versus laparoscopic radical hysterectomy for cervical cancer in the postdissemination era. Cancer Res Treat. 2019;51(2):788–96. https://doi.org/10.4143/crt.2018.120.

    Article  PubMed  Google Scholar 

  18. Cusimano MC, Baxter NN, Gien LT, et al. Impact of surgical approach on oncologic outcomes in women undergoing radical hysterectomy for cervical cancer. Am J Obstet Gynecol. 2019;221(6):619.e1-619.e24. https://doi.org/10.1016/j.ajog.2019.07.009.

    Article  PubMed  Google Scholar 

  19. Uppal S, Spencer R. Modify or abandon: minimally invasive radical hysterectomy for early-stage cervical cancer. Int J Gynecol Cancer. 2019;29(5):843–4. https://doi.org/10.1136/ijgc-2019-000574.

    Article  PubMed  Google Scholar 

  20. Uppal S, Gehrig PA, Peng K, et al. Recurrence rates in patients with cervical cancer treated with abdominal versus minimally invasive radical hysterectomy: a multi-institutional retrospective review study. J Clin Oncol. 2020;38(10):1030–40. https://doi.org/10.1200/JCO.19.03012.

    Article  PubMed  Google Scholar 

  21. Sánchez-Periut E, Muro-Toledo G, Losada-Guerra J, Reyes-Almeida L. La nefrostomía percutánea en el carcinoma cérvico-uterino avanzado con uropatía obstructiva. [Percutaneous nephrostomy in advanced cervical cancer with obstructive uropathy] (in Spanish). Revista Mexicana de Urología 2016;76(4):207–12. https://doi.org/10.1016/j.uromx.2016.04.002

  22. Nogueira Diasn Genta ML, Sadalla JC, De Carvalho JPM, et al. Multiple HPV genotype infection impact on invasive cervical cancer presentation and survival. PLoS One. 2017 Aug;12(8):e0182854. https://doi.org/10.1371/journal.pone.0182854

  23. Jeon W, Koh HK, Kim HJ, Wu HG, Kim JH, Chung HH. Salvage radiotherapy for lymph node recurrence after radical surgery in cervical cancer. J Gynecol Oncol. 2012;23(3):168–74. https://doi.org/10.3802/jgo.2012.23.3.168.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uno T, Kanazawa A, Nemoto MW, et al. Radiation therapy for extrapelvic lymph node recurrence after curative treatment for cervical cancer. Anticancer Res. 2019;39(2):891–6. https://doi.org/10.21873/anticanres.13190.

    Article  CAS  PubMed  Google Scholar 

  25. Ho KC, Wang CC, Qiu JT, et al. Identification of prognostic factors in patients with cervical cancer and supraclavicular lymph node recurrence. Gynecol Oncol. 2011;123(2):253–6. https://doi.org/10.1016/j.ygyno.2011.07.020.

    Article  PubMed  Google Scholar 

  26. Polterauer S, Grimm C, Hofstetter G, et al. Nomogram prediction for overall survival of patients diagnosed with cervical cancer. Br J Cancer. 2012;107(6):918–24. https://doi.org/10.1038/bjc.2012.340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2017 [cited on 11th Feb 2022]. Available in: http://www.R-project.org

  28. Dienstmann R, da Silva PC, Pereira MT, Small IA, Ferreira CG. Palliative percutaneous nephrostomy in recurrent cervical cancer: a retrospective analysis of 50 consecutive cases. J Pain Symptom Manage. 2008;36(2):185–90. https://doi.org/10.1016/j.jpainsymman.2007.09.010.

    Article  PubMed  Google Scholar 

  29. Kim JY, Nam BH, Lee JA. Is human papillomavirus genotype an influencing factor on radiotherapy outcome? Ambiguity caused by an association of HPV 18 genotype and adenocarcinoma histology. J Gynecol Oncol. 2011;22(1):32–8. https://doi.org/10.3802/jgo.2011.22.1.32.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Onuki M, Matsumoto K, Tenjimbayashi Y, et al. Human papillomavirus genotype and prognosis of cervical cancer: Favorable survival of patients with HPV16-positive tumors. Papillomavirus Res. 2018;6:41–5. https://doi.org/10.1016/j.pvr.2018.10.005.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lai CH, Chang CJ, Huang HJ, et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J Clin Oncol. 2007;25(24):3628–34. https://doi.org/10.1200/JCO.2007.11.2995.

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors met the authorship criteria. JCG: Investigation, Conceptualization, Methodology, Writing-Original draft preparation, Visualization, Writing-Reviewing and Editing. LRP: Methodology, Software, Data Curation, Formal analysis, Validation, Writing-Reviewing and Editing, and Supervision. MCRR: Supervision. FMM: Resources and Supervision. IRJ: Resources and Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jorge Cea García.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or financial support.

Informed Consent

The research assistant obtained a written informed consent from each subject before each interview to participate and publish her data; participants were assured that they could stop the study process at any time and were assured that nonparticipation would have no consequences for their follow-up care or therapy. There was no refund for the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

Statistical analysis of the confounding factors of the association between the overall survival and the type of surgery/surgical approach. P-values are presented in the Table.

BRH vs. C2 RH

Laparoscopy

Laparotomy

2/TEH 19

Laparoscopy

Laparotomy

Surgical approach

34

13

34

13

N

BRH 4+5

BRH  +  2CRH 15

BRH  + C2RH 8/TEH 5

Type of surgery

1

0.358

 

0.184

Age

1

0.676

 

0.187

Comorbidities

1

0.473

 

Baseline PS

1

0.357

 

0.699

FIGO stage

0.22

0.199

 

0.596

Histological type

0.877

0.421

 

0.285

Histological grade

1

0.42

 

0.418

LVI

0.928

0.942

 

0.1

DSI

0.207

0.326

 

0.156

MTD

0.695

 

0.695

MTD ≥ 20 mm

 

0.521

Surgical technique

1

0.446

 

0.027

PL

0.17

0.451

 

0.381

PLNs

removed

 

0.119

PALNs

removed

1

1

 

1

MLNs

1

0.25

 

1

Recurrence

-

0.156

 

0.002

Follow-up duration

DSI deep stromal invasion, TEH total extrafascial hysterectomy, FIGO International Federation of Gynecology and Obstetrics, LVI lymphovascular invasion, MLN metastatic lymph node, MTD maximum tumor diameter, N sample size, PL pelvic lymphadenectomy, PLN pelvic lymph node, PALN para-aortic lymph node, PS performance status, RH radical hysterectomy.

Appendix II

Statistical analysis of the background variables and confounding factors of the association between the overall survival and the surgical approach in patients submitted to type B radical hysterectomy and in patients who underwent radical surgery alone vs. total extrafascial hysterectomy

Variables

Type B RH laparotomy (N = 4) vs. laparoscopy (N = 5) (p)

Radical surgery alone (N = 16) vs. TEH (N = 30) (p)

Age at diagnosis of CC

0.358

0.753

Menopausal state at diagnosis

0.919

0.794

Smoking prior to CC

0.072

0.794

BMI

0.07

0.228

Origin

0.268

0.289

Nationality

0.089

0.29

Marital status at survey

0.789

0.48

Religion

0.333

0.697

Social stratum

0.829

0.539

Educational level

0.176

0.67

Occupation

0.402

0.671

Comorbidities

0.676

0.877

Depression prior to CC

0.61

0.457

Prior C-section

0.409

0.39

Histological type

0.199

0.342

Histological grade

0.421

0.005

Low 43.75% < 76.67%

High

43.75% > 6.67%

LVI

0.42

0.457

MTD

0.326

0.002

21.6 vs. 5.88 mm

Stromal invasion

0.942

0.001

 < 1/3 31.25% < 73.33%

CC stage

0.357

 < 0.0001

IA1 18.75% < 83.33%

IB1

10% < 93.75%

Baseline PS score

0.473

1

Ovarian preservation

0.632

0.457

SLNB

0.012

Laparoscopy > laparotomy

 < 0.0001

43.75% > 0%

PL

0.446

 < 0.0001

100% > 13.33%

PAL

0.007

Laparotomy > laparoscopy

0.026

18.75 > 0%

Number of PLNs removed

0.451

0.85

Number of MPLNs removed

1

1

Intraoperative complications

0.729

0.731

Postoperative complications

0.025

27.27 vs. 64.52%

0.413

Overall complications 0.342

Time interval to diagnosis of surgical

complication

0.036

21 vs. 5.5 days

0.502

Length of hospital stay

0.007

6.11 vs. 3.22 days

0.018

5.07 vs. 2.68

Number of recurrences

0.25

1

Follow-up time > 2 years

 < 0.0001

100% vs. 71.88%

0.363

BMI body mass index, CC cervical cancer, C-section cesarean section, LVI lymphovascular invasion, MPLN metastatic pelvic lymph node, MTD maximum tumor diameter, PL pelvic lymphadenectomy, PAL para-aortic lymphadenectomy, PLN pelvic lymph node, PS performance status, RH radical hysterectomy, SLNB sentinel lymph node biopsy, TEH total extrafascial hysterectomy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea García, J., Márquez Maraver, F., Rodríguez Jiménez, I. et al. Internal Validation of a Predictive Model for Overall Survival in Patients with FIGO stages I–IV Cervical Cancer. Indian J Gynecol Oncolog 21, 67 (2023). https://doi.org/10.1007/s40944-023-00744-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40944-023-00744-2

Keywords

Navigation