Skip to main content
Log in

Hydrogeological and geochemical evidence for the origin of brackish groundwater in the Shabestar plain aquifer, northwest Iran

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Shabestar plain aquifer is located in the northeast of the hypersaline Urmia Lake, northwest Iran. There are two types of the aquifer in the plain: an unconfined aquifer that covers the plain and a confined aquifer that is just in the vicinity of the lake. In recent years, some of the agricultural wells have become salinized by saline water due to unrestricted groundwater pumping. Groundwater in the confined aquifer in comparison with the above unconfined aquifer is of good quality. The salty Urmia Lake is considered the most probable source of groundwater salinization. Other potential sources of groundwater salinization could include halite dissolution, and halite is exposed at the southern end of Shabestar plain, and evaporation from the shallow water table. The water samples, based on their total dissolved solid and chloride contents, are classified in the brackish group. The hydrogeological setting and boreholes log interpretation suggest that the saltwater is the result of Urmia Lake water that is entrapped within the fine-grained matrix from when the lake reached its greatest extent. The ratios of Na/Cl, Br/Cl, (Ca + Mg)/SO4, Mg/Cl, (2Ca + Na)/Cl and Rittenhouse diagram preclude halite dissolution as a salinity source and confirm that the lake water with the composition of seawater is the main cause of groundwater salinization. In addition, Li/Cl ratios indicate that the original briny water was somewhat affected by evaporation. However, the effect of evaporation was found to be, at most, a minor influence only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359(1):189–207. doi:10.1016/j.jhydrol.2008.06.028

    Article  Google Scholar 

  • Alipour S (2006) Hydrogeochemistry of seasonal variation of Urmia salt lake. Iran Saline Syst 2(9):9. doi:10.1186/1746-1448-2-9

    Article  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation (1915) Standard methods for the examination of water and wastewater, vol 2. American Public Health Association

  • Bagheri R, Nadri A, Raeisi E, Kazemi G, Eggenkamp H, Montaseri A (2014) Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches. Environ Earth Sci 72(4):1055–1072. doi:10.1007/s12665-013-3022-7

    Article  Google Scholar 

  • Bavaghar N, Ghazban F (1998) Geochemistry and the source of salt of Urmia Lake. In: 1st conference on Iran marine geology, Chabahar, Iran. Sistan and Baluchestan university

  • Birkle P, Aragón JR, Portugal E, Aguilar JF (2002) Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. Am Assoc Pet Geol Bull 86(3):457–484

    Google Scholar 

  • Bottomley D, Katz A, Chan L, Starinsky A, Douglas M, Clark I, Raven K (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? new lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155(3):295–320. doi:10.1016/S0009-2541(98)00166-1

    Article  Google Scholar 

  • Carpenter AB et al (1978) Origin and chemical evolution of brines in sedimentary basins. In: SPE annual fall technical conference and exhibition. Society of Petroleum Engineers. doi:10.2118/7504-MS

  • Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231(1):38–56. doi:10.1016/j.chemgeo.2005.12.009

    Article  Google Scholar 

  • Custodio E, Llamas MR et al (1976) Hidrología subterránea. ed. Omega

  • Daneshvar NHA (1995) Physico-chemical study of Uromia Lake water. Ecology 17(17):34–41

    Google Scholar 

  • Davis SN, Fabryka-Martin JT, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Groundwater 42(6):902–909

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Groundwater 36(2):338–350. doi:10.1111/j.1745-6584.1998.tb01099.x

    Article  Google Scholar 

  • Davoudzadeh M, Lammerer B, Weber-Diefenbach K (1997) Paleogeography, stratigraphy, and tectonics of the Tertiary of Iran. Neues Jahrb Geol Palaontol Abh 205(3):33–68

    Article  Google Scholar 

  • Djamali M, de Beaulieu J-L, Shah-hosseini M, Andrieu-Ponel V, Ponel P, Amini A, Akhani H, Leroy SA, Stevens L, Lahijani H et al (2008) A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat Res 69(3):413–420. doi:10.1016/j.yqres.2008.03.004

    Article  Google Scholar 

  • Dror G, Ronen D, Stiller M, Nishri A (1999) Cl/Br ratios of Lake Kinneret, pore water and associated springs. J Hydrol (Amst) 225(3):130–139. doi:10.1016/S0022-1694(99)00155-9

    Article  Google Scholar 

  • Edmunds W, Smedley P (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15(6):737–752. doi:10.1016/S0883-2927(99)00079-7

    Article  Google Scholar 

  • Eimanifar A, Mohebbi F (2007) Urmia Lake (Northwest Iran): a brief review. Saline Syst 3(5):1–8. doi:10.1186/1746-1448-3-5

    Article  Google Scholar 

  • YEKOM Consulting Engineers (2002) Management plan for the Lake Uromiyeh ecosystem. Report 1 of the EC-IIP Environmental Management Project for Lake Uromiyeh, Iran. YEKOM Consulting Engineers, Tehran

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: Chemistry, Geology, and Physics. Springer, Berlin, Heidelberg, New York, pp 237–293. doi:10.1007/978-1-4757-1152-3_8

    Chapter  Google Scholar 

  • Fidelibus M, Giménez E, Morell I, Tulipano L (1993) Salinization processes in the Castellon plain aquifer. Study and modelling of saltwater intrusion into aquifers. CIMNE-UPC, Barcelona, pp 267–283

    Google Scholar 

  • Field M (1993) Multilevel pumping wells as a means for remediating a contaminated coastal aquifer. Technical Report EPA/600/R-93/209, US Environmental Protection Agency, Washington, DC

  • Flury M, Papritz A (1993) Bromide in the natural environment: occurrence and toxicity. J Environ Qual 22(4):747–758

    Article  Google Scholar 

  • Fontes JC, Matray J (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chem Geol 109(1):149–175. doi:10.1016/0009-2541(93)90068-T

    Article  Google Scholar 

  • Freeman JT (2007) The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrogeol J 15(7):1377–1385. doi:10.1007/s10040-007-0201-1

    Article  Google Scholar 

  • Freeze R, Cherry J (1979) Groundwater. Prentice-Hall Inc, Englewood

    Google Scholar 

  • Furon R (1941) Geologie du plateau Iranien: (Perse-Afghanistan-Beloutchistan). Museum National d’histoire naturelle

  • Gimenez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environ Geol 29(1–2):118–131. doi:10.1007/s002540050110

    Article  Google Scholar 

  • Han D, Kohfahl C, Song X, Xiao G, Yang J (2011) Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China. Appl Geochem 26(5):863–883. doi:10.1016/j.apgeochem.2011.02.007

    Article  Google Scholar 

  • Han D, Post VE, Song X (2015) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J Hydrol. doi:10.1016/j.jhydrol.2015.11.013

    Article  Google Scholar 

  • Herczeg A, Dogramaci S, Leaney F (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52(1):41–52

    Article  Google Scholar 

  • Hogan CM (2011) Lake Urmia. In: Saundry P, Cleveland CJ (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington DC

    Google Scholar 

  • Jahanshahi R, Zare M (2016) Hydrochemical investigations for delineating salt-water intrusion into the coastal aquifer of Maharlou Lake, Iran. J Afr Earth Sci 121:16–29. doi:10.1016/j.jafrearsci.2016.05.014

    Article  Google Scholar 

  • Jahanshahi R, Zare M (2017) Delineating the origin of groundwater in the Golgohar mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environ. doi:10.1007/s10230-017-0444-6

    Article  Google Scholar 

  • James G, Wynd J (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49(12):2182–2245

    Google Scholar 

  • Kelley WP (1948) Cation exchange in soils. Reinhold Publishing Corporation, New York, p 144

    Google Scholar 

  • Kelts K, Shahrabi M (1986) Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 54(1):105–130. doi:10.1016/0031-0182(86)90120-3

    Article  Google Scholar 

  • Kharroubi A, Tlahigue F, Agoubi B, Azri C, Bouri S (2012) Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia. Environ Earth Sci 67(7):2089–2100. doi:10.1007/s12665-012-1648-5

    Article  Google Scholar 

  • Khaska M, La Salle CLG, Lancelot J, Mohamad A, Verdoux P, Noret A, Simler R et al (2013) Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl Geochem 37:212–227. doi:10.1016/j.apgeochem.2013.07.006

    Article  Google Scholar 

  • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Acta 65(22):4087–4101. doi:10.1016/S0016-7037(01)00640-8

    Article  Google Scholar 

  • Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC Press, London

    Google Scholar 

  • Lak R, Darvishikhatuoni J, Mohammadi A (2012) Study of paleolimnology and causes of sudden decrease of Urmia Lake water level. J Geotech Geol 7(4):343

    Google Scholar 

  • Leeman WP, Sisson VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. In: Boron: mineralogy, petrology and geochemistry in the earthâĂŹs crust, pp 645–707

    Chapter  Google Scholar 

  • Leonard A, Ward P (1962) Use of Na/Cl ratios to distinguish oil-field from salt-spring brines in western Oklahoma. Geol Surv Res 1962:126–127

    Google Scholar 

  • Livingstone DA (1963) Chemical composition of rivers and lakes. US Government Printing Office

  • Löffler H (1956) Ergebnisse der Österreichischen Iran Expedition 1949–50: Limnologische Untersuchungen an Iranishchen Binnengewässern. Hydrobiology 8:201–278

    Article  Google Scholar 

  • Lui-Heung C, Gieskes JM, Chen-Feng Y, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58(20):4443–4454. doi:10.1016/0016-7037(94)90346-8

    Article  Google Scholar 

  • Mazor E, Dekker M (1997) Chemical and isotopic groundwater hydrology. Environ Int 2(23):265

    Google Scholar 

  • Mirecki JE, Parks WS (1994) Leachate geochemistry at a municipal landfill, Memphis, Tennessee. Groundwater 32(3):390–398. doi:10.1111/j.1745-6584.1994.tb00656.x

    Article  Google Scholar 

  • Neal C, Fox KK, Harrow M, Neal M (1998) Boron in the major UK rivers entering the North Sea. Sci Total Environ 210:41–51. doi:10.1016/S0048-9697(98)00043-6

    Article  Google Scholar 

  • Paillet FL, Reese RS (2000) Integrating borehole logs and aquifer tests in aquifer characterization. Groundwater 38(5):713–725. doi:10.1111/j.1745-6584.2000.tb02707.x

    Article  Google Scholar 

  • Paropkari A (1990) Geochemistry of sediments from the Mangalore-Cochin shelf and upper slope off southwest India: geological and environmental factors controlling dispersal of elements. Chem Geol 81(1):99–119. doi:10.1016/0009-2541(90)90041-5

    Article  Google Scholar 

  • Pengra B (2012) The drying of IranâĂŹs Lake Urmia and its environmental consequences. UNEP-GRID, Sioux Falls, UNEP Global Environmental Alert Service (GEAS)

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25(6):914–928. doi:10.1029/TR025i006p00914

    Article  Google Scholar 

  • Reichenbacher B, Alimohammadian H, Sabouri J, Haghfarshi E, Faridi M, Abbasi S, Matzke-Karasz R, Fellin MG, Carnevale G, Schiller W et al (2011) Late Miocene stratigraphy, palaeoecology and palaeogeography of the Tabriz Basin (NW Iran, Eastern Paratethys). Palaeogeogr Palaeoclimatol Palaeoecol 311(1):1–18. doi:10.1016/j.palaeo.2011.07.009

    Article  Google Scholar 

  • Rittenhouse G (1967) Bromine in oil-field waters and its use in determining possibilities of origin of these waters. Am Assoc Pet Geol Bull 51(12):2430–2440

    Google Scholar 

  • Rose EF, Chaussidon M, France-Lanord C (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim Cosmochim Acta 64(3):397–408. doi:10.1016/S0016-7037(99)00117-9

    Article  Google Scholar 

  • Sánchez-Martos F, Pulido-Bosch A, Molina-Sánchez L, Vallejos-Izquierdo A (2002) Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci Total Environ 297(1):43–58. doi:10.1016/S0048-9697(01)01011-7

    Article  Google Scholar 

  • Sanders LL (1991) Geochemistry of formation waters from the Lower Silurian Clinton Formation (Albion Sandstone), Eastern Ohio (1). Am Assoc Pet Geol Bull 75(10):1593–1608

    Google Scholar 

  • Schwartz FW, Zhang H (2003) Fundamentals of ground water. Wiley, New York

    Google Scholar 

  • Sen Z (1995) Applied hydrogeology for scientists and engineers. CRC Press Inc, Boca Raton

    Google Scholar 

  • Sonnenfeld P (1984) Brines and evaporites. Academic Press, New York

    Google Scholar 

  • Stöcklin J (1971) Stratigraphic lexicon of Iran. Geological Survey of Iran

  • Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim Cosmochim Acta 55(1):309–325. doi:10.1016/0016-7037(91)90420-A

    Article  Google Scholar 

  • Stuyfzand P, Stuurman RJ (1994) Recognition and genesis of various brackish to hypersaline groundwaters in the Netherlands. In: Proceedings of 13th Salt Water Intrusion Meeting. University of Cagliari Sardinia, pp 125–136

  • Todd D (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Tulipano L, Fidelibus M (1984) Geochemical characteristics of Apulian coastal springs water (Southern Italy) related to mixing processes of ground waters with sea water having different residence time into the aquifer. Proceeding of the fifth international conference on water resources planing and management. European mediterranean commission for water planning (EMCWP), Athens, pp 255–267

  • Uhlman K (1991) The geochemistry of boron in a landfill monitoring program. Groundw Monit Remediat 11(4):139–143. doi:10.1111/j.1745-6592.1991.tb00401.x

    Article  Google Scholar 

  • Vengosh A, Pankratov I (1998) Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Groundwater 36(5):815–824. doi:10.1111/j.1745-6584.1998.tb02200.x

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta 55(6):1689–1695. doi:10.1016/0016-7037(91)90139-V

    Article  Google Scholar 

  • Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci USA 109(30):11961–11966

    Article  Google Scholar 

  • Weaver T, Frape S, Cherry J (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan basin. Geol Soc Am Bull 107(6):697–707. doi:10.1130/0016-7606(1995) 107<0697:RCFFFA>2.3.CO;2

    Article  Google Scholar 

  • Whittemore DO (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31

    Google Scholar 

  • Yamani M, Moghimi E, Lak R, Jafar Beiglu M, Salehipour Milani A (2015) Reconstruction of quaternary paleo lake levels of Urmia by studying lake terraces. Phys Geogr Res Q 47:1–19

    Google Scholar 

  • Zarei M, Raeisi E, Merkel BJ, Kummer N-A (2013) Identifying sources of salinization using hydrochemical and isotopic techniques, Konarsiah, Iran. Environ Earth Sci 70(2):587–604. doi:10.1007/s12665-012-2143-8

    Article  Google Scholar 

  • Zarghami M (2011) Effective watershed management; case study of Urmia Lake, Iran. Lake Reserv Manag 27(1):87–94. doi:10.1080/07438141.2010.541327

    Article  Google Scholar 

  • Zherebtsova I, Volkova N (1966) Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

Download references

Acknowledgements

This research was supported by Tabriz University. We would like to take this opportunity to thank Tabriz University for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Saberi Mehr.

Additional information

Disclaimer

The views expressed in this paper are solely those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names does not constitute endorsement.

This article is part of the special issue on Groundwater Vulnerability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehr, S.S., Moghaddam, A.A. & Field, M.S. Hydrogeological and geochemical evidence for the origin of brackish groundwater in the Shabestar plain aquifer, northwest Iran. Sustain. Water Resour. Manag. 5, 1381–1404 (2019). https://doi.org/10.1007/s40899-017-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0192-6

Keywords

Navigation