Skip to main content
Log in

Removal of As(III) and As(V) from wastewater using Corynebacterium glutamicum MTCC 2745 immobilized on Sawdust/MnFe2O4 composite: kinetic, mechanistic and thermodynamic modelling

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The present study has dealt with the design of simultaneous biosorption and bioaccumulation (SBB) batch system for As(III) and As(V) ions removal from wastewater. Sawdust/MnFe2O4 composite was used as carrier to immobilize Corynebacterium glutamicum MTCC 2745. This methodology was adopted for SBB of arsenic from wastewater. The biosorption capacity of immobilized bacterial cells was 45.43478 and 47.42308 mg/g for As(III) and As(V), respectively, at optimum contact time of 240 min and temperature 30 °C. The existence of functional groups on the cell wall surface of biomass that may interact with As(III) and As(V) was proved by FTIR and SEM–EDX. The results showed that Brouers–Weron–Sotolongo and fractal-like pseudo-second-order models for both As(III) and As(V) were capable to deliver realistic explanation of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the present study showed that the rate-controlling step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The suitability of proposed model indicated that biosorption/bioaccumulation of As(III) and As(V) ions on the surface of SBB biomass was chemisorptive and exothermic in nature. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited the growth of bacteria existing in the final wastewater discarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a E :

Elovich coefficient representing the initial adsorption rate (mg/g min)

b E :

Elovich coefficient representing desorption constant (g/mg)

A :

The frequency factor

B bt :

A mathematical function of F (F = q t /q e)

C 0 :

Initial concentration of arsenic in the solution (mg/L)

C e :

Equilibrium concentration of arsenic in the solution (mg/L)

C s :

The concentration of arsenic on the adsorbent and in the solution (mg/L)

C int :

The intercept of the intraparticle diffusion plot (mg/g)

d :

The thickness of the water film adhered to the adsorbent (cm)

D 1 :

Film diffusion constant (cm2/s)

D 2 :

Pore diffusion constant (cm2/s)

D e :

Diffusivity (m2/s)

D f :

Film diffusion coefficient (cm2/s)

D p :

Pore diffusion coefficient (cm2/s)

E a :

The activation energy of adsorption characterizing the distribution (kJ/mol)

F :

The adsorption progress (F = q t /q e)

f 2 :

The involvement of pseudo-second-order model

f eq :

The Langmuir batch equilibrium factor

h :

The initial adsorption rate (mg/g min)

k1,0 :

The fractal-like mixed 1,2-order rate coefficient (1/min)α

k2R :

The modified second-order rate coefficient (1/min)

k2R :

The Ritchie second-order rate coefficient (1/min)

k AV :

The Avrami kinetic rate coefficient (1/min)

k a,obs :

The acquired rate coefficients of adsorption

k d,obs :

The acquired rate coefficients of desorption

k b :

The Bangham model constant (mL/g L)

k d :

The adsorption equilibrium constant (L/g)

k DW :

The Dumwald–Wagner rate constant (1/min)

k EXP :

The exponential rate coefficient (mg/g min)

k int :

The intraparticle diffusion rate coefficient (mg/g min0.5)

k M :

The film diffusion rate constant (1/min)

k MOE :

The mixed 1,2-order rate coefficient (1/min)

k nBWS,α :

The reaction constant (1/min)

k PF :

The fractional power model rate constant (mg/g min)

k PFO :

The pseudo-first-order rate coefficient (1/min)

k PSO :

The pseudo-second-order rate coefficient (g/mg min)

kEXP :

Division of k EXP by q e (1/min)

kEXP :

The fractal-like exponential rate coefficient (1/min)

kPFO :

The fractal-like pseudo-first-order kinetic rate coefficient (1/min)

kFPFO :

The fractal-like pseudo-first-order kinetic rate coefficient (1/min)α

kFPSO :

The fractal-like pseudo-second-order kinetic rate coefficient (g/mg min)α

kPSO :

Multiplication of q e and k PSO (1/min)

kFPSO :

Multiplication of q e and kFPSO (1/min)

m :

The weight of the adsorbent per litre of solution (g/L)

m b :

An integer that describes infinite series solution

n :

The number of observations in the experimental study

n AV :

Constant corresponding to the mechanism of adsorption

n BWS :

A fractional reaction order

n R :

Number of surface sites

p :

The number of parameters to be estimated

q e :

The amount of adsorbate adsorbed on the adsorbent surface at equilibrium (mg/g)

q m :

The adsorption capacity

q t :

The amount of adsorbate adsorbed on the adsorbent surface at time t (mg/g)

q t,exp :

The biosorption capacity observed from the batch experiment after time t (mg/g)

q t,model :

The calculation from the kinetic model corresponding to C t

r :

Mean radius of adsorbent particle (assumed spherical) (cm)

r a :

The rate of adsorption

r d :

The rate of desorption

R :

The universal gas constant (8.314 J/mol K)

R e :

% removal

t :

Contact time (min)

t (1/2) :

The time necessary for falling the adsorbate concentration to half the initial concentration (s)

t α :

A fractal time

T :

The absolute temperature (K)

u eq :

Relative equilibrium uptake

v :

Adjustment parameter

V :

The volume of the solution (mL)

α :

The fractal time exponent

α b :

Bangham model constant

θ :

The adsorbent surface coverage at pre-adsorbed stage (θ = q t /q e), dimensionless

θ 0 :

The adsorbent surface coverage at time t (θ 0 = q 0/q e), dimensionless

θ e :

The relative surface coverage at equilibrium

τ 1/2 :

Half-reaction time (min)

τ nBWS,α :

The time required for adsorbing half the maximum amount

ΔG 0 :

Gibbs free energy change (kJ/mol)

ΔH 0 :

Enthalpy change (kJ/mol)

ΔS 0 :

Entropy change (J/mol K)

References

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23.

    Article  Google Scholar 

  • Alvarado S, Guédez M, Marcó PLM, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhomia crassioes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440.

    Article  Google Scholar 

  • Amuda OS, Amoo IA, Ajayi OO (2006) Performance optimization of coagulation/flocculation process in the treatment of beverage industrial wastewater. J Hazard Mater 129:69–72

    Article  Google Scholar 

  • Antunes FAF, Santos JC, Chandel AK, Milessi TSS, Peres GFD, da Silva SS (2016) Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring. Rate Curr Microbiol 72(2):133–138.

    Article  Google Scholar 

  • Atun G, Hisarli G (2003) Adsorption of carminic acid, a dye onto glass powder. Chem Eng J 95:241–249

    Article  Google Scholar 

  • Basha CA, Bhadrinarayana NS, Anantharaman N, Begum KMMS (2008) Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J Hazard Mater 152:71–78

    Article  Google Scholar 

  • Bianfang Z, Guide T, Zonglin Y, Zhenbiao W, Qingfen Y, Jianpo C (2007) Synthesis of magnetic manganese ferrite. J Wuhan Univ Technol Mater Sci Ed 22:514–517

    Article  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41:815–823

    Article  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447.

    Article  Google Scholar 

  • Dash RR, Balomajumder C, Kumar A (2009) Removal of metal cyanides from aqueous solutions by suspended and immobilized cells of Rhizopus oryzae (MTCC 2541). Eng Life Sci 9(1):53–59

    Article  Google Scholar 

  • Dash RR, Dash RR, Balomajumdar C (2014) Treatment of cyanide bearing effluents by adsorption, biodegradation and combined processes: effect of process parameters. Desalin Water Treat 52(16–18):3355–3366.

    Article  Google Scholar 

  • Egila JN, Dauda BEN, Iyaka YA, Jimoh T (2011) Agricultural waste as a low cost adsorbent for heavy metal removal from wastewater. Int J Phys Sci 6:2152–2157

    Google Scholar 

  • Ergul-Ulger Z, Ozkan AD, Tunca E, Atasagun S, Tekinay T (2014) Chromium(VI) biosorption and bioaccumulation by live and acid-modified biomass of a novel Morganella morganii Isolate. Sep Sci Technol 49:907–914

    Article  Google Scholar 

  • European Commission Directive 98/83/EC (1998) Related with drinking water quality intended for human consumption, Brussels, Belgium

  • Gasbarro A, Beolchini F, Veglio´ F (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  Google Scholar 

  • Green-Ruiz C, Tirado VR, Gil BG (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  Google Scholar 

  • Hadi M, McKay G, Samarghandi MR, Maleki A, Aminabad MS (2012) Prediction of optimum adsorption isotherm: comparison of chi-square and log-likelihood statistics. Desalin Water Treat 49:81–94.

    Article  Google Scholar 

  • Haerifar M, Azizian S (2012) Fractal-like adsorption kinetics at the solid/solution interface. J Phys Chem C 116:13111–13119

    Article  Google Scholar 

  • Haerifar M, Azizian S (2013) An exponential kinetic model for adsorption at solid/solution interface. Chem Eng J 215–216:65–71

    Article  Google Scholar 

  • Hanna, OT Sandall OC (1995) Computational methods in chemical engineering, Prentice-Hall International, New Jersey

    Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Supply 7:1–440

    Google Scholar 

  • Igwe JC, Ogunewe DN, Abia AA (2005) Competitive adsorption of Zn(II), Cd(II) and Pb(II) ions from aqueous and non-aqueous solution by maize cob and husk. Afr J Biotechnol 4:1113–1116

    Google Scholar 

  • Jefferson K (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    Article  Google Scholar 

  • Kacar Y, Arpa C, Tan S, Denizli A, Genc O, Arica MY (2002) Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochem 37:601–610

    Article  Google Scholar 

  • Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98:14–21

    Article  Google Scholar 

  • Kim HC, Lee CG, Park JA, Kim SB (2010) Arsenic removal from water using iron-impregnated granular activated carbon in the presence of bacteria. J Environ Sci Health A 45:177–182

    Article  Google Scholar 

  • Kotrba P, Dolecková L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    Google Scholar 

  • Lai CH, Yeh SH, Chen MJ, Huang HC, Huang LJ, Cheng LH (2012) Adsorptive characteristics in a system consisting of iron-coated sands, arsenic and humic acid. Sustain Environ Res 22:135–141

    Google Scholar 

  • Leist M, Casey RJ, Caridi D (2000) The management of arsenic wastes: problems and prospects. J Hazard Mater B 76:125–138

    Article  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresour Technol 99:1509–1517

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microb 9:207–215.

    Google Scholar 

  • McKay G, Otterburn MS, Sweeny AG (1981) Surface mass transfer process during colour removal from effluents using silica. Water Res 15:321–331

    Article  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170

    Article  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak (2013) A state of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416

    Article  Google Scholar 

  • Miretzky P, Munoz C, Carrillo-Chavez A (2008) Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresour Technol 99:1211–1217

    Article  Google Scholar 

  • Mishra V, Majumder CB, Agarwal VK (2008) Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor. J Hazard Mater 153:136–145

    Article  Google Scholar 

  • Mishra V, Majumder CB, Agarwal VK (2010) Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, kinetic, and mechanistic modeling. Clean Soil Air Water 38:1062–1073.

    Article  Google Scholar 

  • Mishra V, Balomajumder C, Agarwal VK (2013) Design and optimization of simultaneous biosorption and bioaccumulation (SBB) system: a potential method for removal of Zn(II) ion from liquid phase. Desalin Water Treat 51:3179–3188.

    Article  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153:588–599

    Article  Google Scholar 

  • Naiya TK, Bhattacharya AK, Das SK (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci 333:14–26

    Article  Google Scholar 

  • Ncibi MC (2008) Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J Hazard Mater 153:207–212

    Article  Google Scholar 

  • Ncibi MC, Ranguin R, Pintor MJ, Jeanne-Rose V, Sillanpää M, Gaspard S (2014) Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. J Anal Appl Pyrolysis 109:205–214

    Article  Google Scholar 

  • Ngah WSW, Hanafiah MAKM (2008) Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetics, equilibrium and thermodynamic studies. Biochem Eng J 39:521–530

    Article  Google Scholar 

  • Nishimura T, Robins RG (1998) Re-evaluation of the solubility and stability regions of calcium arsenites and calcium arsenates in aqueous solution at 25 °C. Miner Proc Extr Met Rev 18:283–308.

    Article  Google Scholar 

  • Nouri L, Ghodbane I, Hamdaoui O, Chiha M (2007) Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J Hazard Mater 149:115–125

    Article  Google Scholar 

  • Ozdemir S, Kilinc E, Poli A, Nicolus B, Guen K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophillic bacteria, Geobacillus oebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. strombolensis: equilibrium, kinetic and thermodynamic studies. Chem Eng J 152:195–206

    Article  Google Scholar 

  • Parsons JG, Lopez ML, Peralta-Videa JR, Gardea-Torresdey JL (2009) Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem J 91:100–106.

    Article  Google Scholar 

  • Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface–layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    Article  Google Scholar 

  • Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13

    Article  Google Scholar 

  • Podder MS, Majumder CB (2015) Modelling of optimum conditions for bioaccumulation of As(III) and As(V) by response surface methodology (RSM). J Environ Chem Eng 3(3):1986–2001

    Article  Google Scholar 

  • Podder MS, Majumder CB (2016a) Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis. Composite Interf 23(4):327–372.

    Article  Google Scholar 

  • Podder MS, Majumder CB (2016b) Investigation on elimination of As(III) and As(V) from wastewater using bacterial biofilm supported on Sawdust/MnFe2O4 composite. Water Conserv Sci Eng 1(1):21–48

    Article  Google Scholar 

  • Podder MS, Majumder CB (2016c) Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on Sawdust/MnFe2O4 composite. Biochem Eng J 105:114–135

    Article  Google Scholar 

  • Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55:113–124

    Article  Google Scholar 

  • Quintelas C, Tavares T (2002) Lead(II) and iron(II) removal from aqueous solution: biosorption by a bacterial biofilm supported on granular activated carbon. J Resour Environ Biotechnol 3:196–202

    Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009a) Rice polish: an alternative to conventional adsorbents for treating arsenic bearing water by up-flow column method. Ind Eng Chem Res 48:10180–10185

    Article  Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009b) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166:1050–1059

    Article  Google Scholar 

  • Rengaraj S, Yeon JW, Kim Y, Jung Y, Ha YK, Kim WH (2007) Adsorption characteristics of Cu(II) onto ion exchange resins 252 H and 1500 H: kinetics, isotherms and error analysis. J Hazard Mater 143:469–477

    Article  Google Scholar 

  • Robins RG (1987) The solubility and stability of scorodite, FeAsO4·2H2O. Discuss Am Miner 72:842–844.

    Google Scholar 

  • Roghani M, Nakhli SAA, Aghajani M, Rostami MH, Borghei SM (2016) Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. J Water Process Eng 14:101–107

    Article  Google Scholar 

  • Romero-Gonz´alez J, Peralta-Videa JR, Rodrıˇıguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:343–347

    Article  Google Scholar 

  • Roy P, Mondal NK, Das K (2014) Modeling of the adsorptive removal of arsenic: a statistical approach. J Environ Chem Eng 2:585–597

    Article  Google Scholar 

  • Sag Y, Kutsal T (1995) Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics. Chem Eng J 60:181–188

    Google Scholar 

  • Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater Chem Phys 135:16–24

    Article  Google Scholar 

  • Shashirekha V, Sridharan MR, Swamy M (2008) Biosorption of trivalent chromium by free and immobilized blue green algae: kinetics and equilibrium studies. J Environ Sci Health A 43(4):390–401

    Article  Google Scholar 

  • Sidiras D, Batzias F, Schroeder E, Ranjan R, Tsapatsis M (2011) Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems. Chem Eng J 171:883–896

    Article  Google Scholar 

  • Singh TS, Pant KK (2006) Kinetics and mass transfer studies on the adsorption of arsenic onto activated alumina and iron oxide impregnated activated alumina. Water Qual Res J Can 41:147–156

    Google Scholar 

  • Singha B, Das SK (2011) Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf B 84:221–232

    Article  Google Scholar 

  • Vahidnia A, van der Voet GB, De Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832

    Article  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernández LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665.

    Article  Google Scholar 

  • Van Houdt R, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156:626–633

    Article  Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Intraparticle diffusion during the sorption of surfactants onto activated carbon. J Sanit Eng Div Am Soc Civ Eng 89:53–61

    Google Scholar 

  • WHO (1993) Guidelines for drinking water quality. World Health Organization, Geneva. p 41

    Google Scholar 

  • Yadav KP, Tyagi BS (1987) Fly-ash for the treatment of Cd-rich effluent. Environ Technol Lett 8:225–234.

    Article  Google Scholar 

  • Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose–response relationships in review. Toxicol Appl Pharmacol 198:243–252

    Article  Google Scholar 

  • Yu L, Peng X, Ni F, Li J, Wang D, Luan Z (2013) Arsenite removal from aqueous solutions by γ-Fe2O3–TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J Hazard Mater 246:10–17

    Article  Google Scholar 

  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. J Hazard Mater 148:164–171

    Article  Google Scholar 

  • Zawierucha I, Kozlowski C, Malina G (2016) Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams. Environ Sci Proc Impact 18:429–444.

    Article  Google Scholar 

  • Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158(3):599–607

    Article  Google Scholar 

  • Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks to Indian Institute of Technology, Roorkee, for providing necessary facilities and to Ministry of Human Resource Development, Government of India, for financial support. The thoughtful comments by Dr. Jim LaMoreaux, the Editor-in-Chief and one anonymous reviewer are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Podder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, M.S., Majumder, C.B. Removal of As(III) and As(V) from wastewater using Corynebacterium glutamicum MTCC 2745 immobilized on Sawdust/MnFe2O4 composite: kinetic, mechanistic and thermodynamic modelling. Sustain. Water Resour. Manag. 3, 297–320 (2017). https://doi.org/10.1007/s40899-017-0097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0097-4

Keywords

Navigation