Skip to main content
Log in

Waste to Resource: Enviro-Mechanical Suitability of MSW Incineration Bottom Ash in Flexible Pavements and Embankments

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

The study investigated the potential of incineration bottom ash (IBA) as an alternative to natural aggregates in pavement subbase, subgrade, and embankments. An extensive literature review indicated that a comprehensive study characterizing bottom ash as fill material in pavements is missing. Additionally, IBA properties vary based on waste composition worldwide. In India, IBA is currently disposed in landfills because of a lack of technical exposure and this is the first detailed study of Indian IBA for use in pavements. Strength (bearing, shear), stiffness (secant, resilient, and shear modulus), durability, drainage, abrasion, and toughness characteristics of IBA collected from two incineration plants in India were evaluated. Furthermore, the study assessed the environmental suitability and economic feasibility of using IBA. The experimental results indicate that IBA offers high bearing (soaked CBR values of 40–48%) and shear strength (angle of shearing resistance of 46.3º–47.9º). The secant and resilient moduli of IBA are comparable to conventional material, suggesting its ability to withstand deformation under static and cyclic loading. Higher water absorption and abrasion values preclude its application in subbases of highways and urban roads. However, high strength, stiffness, permeability, durability, and leaching characteristics make IBA suitable for rural roads. IBA also fulfils the standard guidelines for use as fill material in road embankments and subgrades. Reusing IBA in constructing one km of flexible pavement conserves approximately 47 tons of natural aggregates and reduces cost by 20–40%. Additionally, it contributes to a 20% reduction in greenhouse gas emissions, making it a viable alternative to conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data supporting the finding of work will be made available on request.

References

  1. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington DC, USA https://doi.org/10.1596/978-1-4648-1329-0

  2. DEFRA (2013) Incineration of municipal solid waste. Dept. Env Food & Rural Affairs, UK

  3. Tang P, Florea MVA, Spiesz P, Brouwers HJH (2015) Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr Build Mater 83:77–94. https://doi.org/10.1016/j.conbuildmat.2015.02.033

    Article  Google Scholar 

  4. CPCB (2021) Annual report on implementation of solid waste management rules, 2016. Central Pollution Control Board, New Delhi, India. https://cpcb.nic.in/uploads/MSW/MSW_AnnualReport_2020-21.pdf

  5. Tripathy U (2018) A 21st century vision on waste to energy in India: A Win-Win Strategy for Energy Security and Swachh Bharat Mission (Clean India Mission). Ministry of Housing and Urban Affairs (MoHUA), India

  6. Blasenbauer D, Huber F, Lederer J et al (2020) Legal situation and current practice of waste incineration bottom ash utilization in Europe. Waste Manag. https://doi.org/10.1016/j.wasman.2019.11.031

    Article  PubMed  Google Scholar 

  7. Sustainable Development Goals (2018) SDGs Homepage. https://sdgs.un.org/goals

  8. Naik PA, Marathe S, Akhila S, Mayuri BGM (2023) Properties of WFS incorporated cement stabilized lateritic soil subgrades for rural pavement applications. Int J Geosynth Gr Eng 9:38. https://doi.org/10.1007/s40891-023-00460-z

    Article  Google Scholar 

  9. Kakrasul JI, Parsons RL, Han J (2022) Use of lime kiln dust to improve properties of pavement subgrades. Int J Geosynth Ground Eng 8:49. https://doi.org/10.1007/s40891-022-00393-z

    Article  Google Scholar 

  10. Prajapati A, Rangwala H (2022) Utilization of recycled construction and demolition waste in backfill soil. Int J Geosynth Gr Eng 8:67. https://doi.org/10.1007/s40891-022-00410-1

    Article  Google Scholar 

  11. Chang HL, Jau WC, Li KC, Lin CF (2004) The evaluation of the feasibility of utilizing incineration bottom ash as subbase material. Environ Inform Arch 2:1033–1047

    Google Scholar 

  12. Vaitkus A, Grazulyte J, Vorobjovas V et al (2018) Potential of MSWI bottom ash to be used as aggregate in road building materials. Balt J Road Bridge Eng 13:77–86. https://doi.org/10.3846/bjrbe.2018.401

    Article  Google Scholar 

  13. Gupta G, Datta M, Ramana GV, Alappat BJ (2021) MSW incineration bottom ash (MIBA) as a substitute to conventional materials in geotechnical applications: a characterization study from India and comparison with literature. Constr Build Mater 308:124925. https://doi.org/10.1016/j.conbuildmat.2021.124925

    Article  CAS  Google Scholar 

  14. Asal S, Laux SJ, McVay MC, Townsend TG (2019) Blending organic material with municipal solid waste incinerator bottom ash to promote in-situ carbonation in road base. Waste Manag Res 37:951–955. https://doi.org/10.1177/0734242X19864651

    Article  CAS  PubMed  Google Scholar 

  15. Becquart F, Bernard F, Abriak NE, Zentar R (2009) Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Manag 29:1320–1329. https://doi.org/10.1016/j.wasman.2008.08.019

    Article  CAS  PubMed  Google Scholar 

  16. Forteza R, Far M, Segui C, Cerda V (2004) Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag 24:899–909. https://doi.org/10.1016/j.wasman.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Ogunro V, Inyang H, Hooper F et al (2004) Gradation control of bottom ash aggregate in superpave bituminous mixes. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(604)

    Article  Google Scholar 

  18. Townsend SW, Spreadbury CJ, Lauz SJ et al (2020) Blending as a strategy for reusing municipal solid waste incinerator ash in road-base construction. J Environ Eng 146:4020106. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001788

    Article  CAS  Google Scholar 

  19. Le NH, Abriak NE, Binetruy C et al (2017) Mechanical behavior of municipal solid waste incinerator bottom ash: results from triaxial tests. Waste Manag 65:37–46. https://doi.org/10.1016/j.wasman.2017.03.045

    Article  PubMed  Google Scholar 

  20. Muhunthan B, Taha R, Said J (2004) Geotechnical engineering properties of incinerator ash mixes. J Air Waste Manag Ass 54:985–991

    Article  CAS  Google Scholar 

  21. Puma S, Marchese F, Dominijanni A, Manassero M (2013) Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material. Waste Manag Res 31:577–584. https://doi.org/10.1177/0734242X13477722

    Article  CAS  PubMed  Google Scholar 

  22. Zekkos D, Kabalan M, Syal SM et al (2013) Geotechnical characterization of a municipal solid waste incineration ash from a Michigan monofill. Waste Manag 33:1442–1450. https://doi.org/10.1016/j.wasman.2013.02.009

    Article  PubMed  Google Scholar 

  23. Arm M (2004) Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests. Waste Manag 24:1035–1042. https://doi.org/10.1016/j.wasman.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  24. Lan N, Ha N, Tuan N et al (2021) Static and cyclic properties of municipal solid bottom ash in Vietnam. Int J Geomate 20:152–158. https://doi.org/10.21660/2021.80.j2066

    Article  Google Scholar 

  25. Sormunen L, Kolisoja P (2016) Mechanical properties of recovered municipal solid waste incineration bottom ash: the influence of ageing and changes in moisture content. Road Mater Pavement Des 19:252–270. https://doi.org/10.1080/14680629.2016.1251960

    Article  CAS  Google Scholar 

  26. Spreadbury CJ, McVay M, Laux SJ, Townsend TG (2021) A field-scale evaluation of municipal solid waste incineration bottom ash as a road base material: considerations for reuse practices. Resour Conserv Recycl 168:105264. https://doi.org/10.1016/j.resconrec.2020.105264

    Article  Google Scholar 

  27. Sorlini S, Collivignarelli MC, Abbà A (2017) Leaching behaviour of municipal solid waste incineration bottom ash: from granular material to monolithic concrete. Waste Manag Res 35:978–990. https://doi.org/10.1177/0734242X17721340

    Article  CAS  PubMed  Google Scholar 

  28. ASTM D5231-92 (2016) Standard test method for determination of the composition of unprocessed municipal solid waste. ASTM Int, West Conshohocken

  29. ASTM D6913/D6913M-17 (2017) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM Int, West Conshohocken

  30. ASTM D4318–17 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM Int, West Conshohocken

  31. ASTM C127 (2004) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM Int, West Conshohocken

  32. ASTM D854-14 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM Int, West Conshohocken

  33. AASHTO T180-01 (1995) Standard method of test for moisture density relations for soils using 4.54 Kg rammer and a 457 mm drop. AASHTO, Washington

  34. EN 12457-4 (2002) Characterization of waste leaching compliance test for leaching of granular waste materials and sludges part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). Eur Comm Stand

  35. ASTM D2434-68 (2000) Standard standard test method for permeability of granular soils (constant head). ASTM Int, West Conshohocken

  36. ASTM D1883-16 (2016) Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils. ASTM Int, West Conshohocken

  37. ASTM C131/C131M-20 (2020) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine. ASTM Int, West Conshohocken

  38. IS:5640 (1970) Method of test for determining aggregates impact value of soft coarse aggregates. New Delhi, India

  39. ASTM C88/C88M-18 (2018) Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. ASTM Int, West Conshohocken

  40. ASTM D7181 (2020) Standard test method for consolidated drained triaxial compression test for soils. ASTM Int, West Conshohocken

  41. AASHTO T307-99 (2007) Standard method of test for determining the resilient modulus of soils and aggregate materials standard method of test for soils and aggregate materials. AASHTO, Washington

  42. ASTM D8295-19 (2019) Standard Test method for determination of shear wave velocity and initial shear modulus in soil specimens using bender elements. ASTM Int, West Conshohocken

  43. APHA, AWWA WEF (2012) Standard Methods for the examination of water and wastewater. Washington

  44. ASTM D4767-11 (2020) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM Int, West Conshohocken

  45. del Valle-Zermeño R, Gómez-Manrique J, Giro-Paloma J et al (2017) Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time. Sci Total Environ 581–582:897–905. https://doi.org/10.1016/j.scitotenv.2017.01.047

    Article  CAS  PubMed  Google Scholar 

  46. Huber F, Blasenbauer D, Aschenbrenner P, Fellner J (2020) Complete determination of the material composition of municipal solid waste incineration bottom ash. Waste Manag 102:677–685. https://doi.org/10.1016/j.wasman.2019.11.036

    Article  CAS  PubMed  Google Scholar 

  47. Šyc M, Krausová A, Kameníková P et al (2018) Material analysis of bottom ash from waste-to-energy plants. Waste Manag 73:360–366. https://doi.org/10.1016/j.wasman.2017.10.045

    Article  CAS  PubMed  Google Scholar 

  48. van de Wouw PMF, Loginova E, Florea MVA, Brouwers HJH (2020) Compositional modelling and crushing behaviour of MSWI bottom ash material classes. Waste Manag 101:268–282. https://doi.org/10.1016/j.wasman.2019.10.013

    Article  PubMed  Google Scholar 

  49. Caviglia C, Confalonieri G, Corazzari I et al (2019) Effects of particle size on properties and thermal inertization of bottom ashes (MSW of Turin’s incinerator). Waste Manag 84:340–354. https://doi.org/10.1016/j.wasman.2018.11.050

    Article  CAS  PubMed  Google Scholar 

  50. Le NH, Razakamanantsoa A, Nguyen ML et al (2018) Evaluation of physicochemical and hydromechanical properties of MSWI bottom ash for road construction. Waste Manag 80:168–174. https://doi.org/10.1016/j.wasman.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  51. Lin WY, Heng KS, Sun X, Wang JY (2015) Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Manag 41:75–84. https://doi.org/10.1016/j.wasman.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  52. Vizcarra GOC, Casagrande MDT, da Motta LMG (2014) Applicability of municipal solid waste incineration ash on base layers of pavements. J Mater Civ Eng 26:6014005. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000903

    Article  CAS  Google Scholar 

  53. Wei Y, Shimaoka T, Saffarzadeh A, Takahashi F (2011) Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J Hazard Mater 187:534–543. https://doi.org/10.1016/j.jhazmat.2011.01.070

    Article  CAS  PubMed  Google Scholar 

  54. Priti MK (2019) Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. J Mater Cycles Waste Manag 21:1263–1279. https://doi.org/10.1007/s10163-019-00880-y

    Article  Google Scholar 

  55. Hu Y, Guojian L, Yingjie Z (2010) Utilization of municipal solid waste incineration bottom ash as road construction materials. In: 2010 International Conference on Mechanic Automation and Control Engineering. pp 1370–1373 https://doi.org/10.1109/MACE.2010.5536261

  56. Izquierdo M, López-Soler Á, Vazquez Ramonich E et al (2002) Characterisation of bottom ash from municipal solid waste incineration in Catalonia. J Chem Technol Biotechnol 77:576–583. https://doi.org/10.1002/jctb.605

    Article  CAS  Google Scholar 

  57. Phoungthong K, Xia Y, Zhang H et al (2016) Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Front Environ Sci Eng 10:399–411. https://doi.org/10.1007/s11783-015-0819-5

    Article  CAS  Google Scholar 

  58. Hjelmar O, Holm J, Crillesen K (2007) Utilisation of MSWI bottom ash as sub-base in road construction: first results from a large-scale test site. J Hazard Mater 139:471–480. https://doi.org/10.1016/j.jhazmat.2006.02.059

    Article  CAS  PubMed  Google Scholar 

  59. Izquierdo M, Querol X, Vazquez E (2011) Procedural uncertainties of proctor compaction tests applied on MSWI bottom ash. J Hazard Mater 186:1639–1644. https://doi.org/10.1016/j.jhazmat.2010.12.045

    Article  CAS  PubMed  Google Scholar 

  60. Kuo WT, Liu CC, Shu CY (2015) The feasibility of using washed municipal solid waste incinerator bottom ash in compressed mortar paving units. J Mar Sci Technol 23:364–372. https://doi.org/10.6119/JMST-014-0416-7

    Article  Google Scholar 

  61. Lynn CJ, Ghataora GS, Dhir Obe RK (2017) Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int J Pavement Res Technol 10:185–201. https://doi.org/10.1016/j.ijprt.2016.12.003

    Article  Google Scholar 

  62. Government of Wallonia (2001) Arrêté du Gouvernement wallon favorisant la valorisation de certains déchets, dated 14/06/2001 (latest modification on 05/07/2018). Wallonia, Belgium. http://environnement.wallonie.be/legis/dechets/decat024.htm

  63. Government of Finland (2017) Government Decree on the recovery of certain wastes in earth construction (843/2017). Ministry of the Environment, Finland https://www.finlex.fi/en/laki/kaannokset/2017/en20170843%0A

  64. Government of French Republic (2011) Arrêté du 18 novembre 2011 relatif au recyclage en technique routière des mâchefers d’incinération de déchets non dangereux. The Ministry of Ecology, Sustainable Development, Transport and Housing, France https://www.legifrance.gouv.fr/loda/id/JORFTEXT000024873229/2020-11-20/

  65. Head KH (2006) Manual of soil laboratory testing. Pentech Press, London

    Google Scholar 

  66. Alshibli K, Cil M (2018) Influence of particle morphology on the friction and dilatancy of sand. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841

    Article  Google Scholar 

  67. Wiles CC, Shepherd P (1999) Beneficial use and recycling of municipal waste combustion residues—a comprehensive resource document. https://www.osti.gov/servlets/purl/8331

  68. Traina G, Morselli L, Adorno GP (2007) Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochim Acta 52:3380–3385. https://doi.org/10.1016/j.electacta.2006.05.067

    Article  CAS  Google Scholar 

  69. Sormunen LA, Rantsi R (2015) To fractionate municipal solid waste incineration bottom ash: key for utilization? Waste Manag Res 33:995–1004. https://doi.org/10.1177/0734242X15600052

    Article  CAS  PubMed  Google Scholar 

  70. IRC:121 (2017) Guidelines for use of construction and demolition waste in road sector. New Delhi, India

  71. Zhang X, Gress D, Karpinski S, Eighmy TT (1999) Utilization of municipal solid waste combustion bottom ash as a paving material. Transp Res Rec 1652:257–263. https://doi.org/10.3141/1652-32

    Article  Google Scholar 

  72. Pecqueur G, Crignon C, Quénée B (2001) Behaviour of cement-treated MSWI bottom ash. Waste Manag 21:229–233

    Article  CAS  PubMed  Google Scholar 

  73. Bruder-Hubscher V, Lagarde F, Leroy MJF et al (2001) Utilization of bottom ash in road construction: evaluation of the environmental impact. Waste Manag Res 19:545–556. https://doi.org/10.1177/0734242x0101900611

    Article  CAS  PubMed  Google Scholar 

  74. Alhassan HM, Tanko AM (2012) Characterization of solid waste incinerator bottom ash and the potential for its use. Int J Eng Res App 2:516–522

    Google Scholar 

  75. Vegas I, Ibañez JA, San José JT, Urzelai A (2008) Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction. Waste Manag 28:565–574. https://doi.org/10.1016/j.wasman.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  76. Kim J, Tasneem K, Nam BH (2014) Material characterization of municipal solid waste incinerator (MSWI) ash as road construction material. In: Pavement performance monitoring, modeling, and management. pp 100–108

  77. Toraldo E, Saponaro S (2015) A road pavement full-scale test track containing stabilized bottom ashes. Environ Technol 36:1114–1122. https://doi.org/10.1080/09593330.2014.982714

    Article  CAS  PubMed  Google Scholar 

  78. An J, Kim J, Golestani B, et al (2014) Evaluating the use of waste-to-energy bottom ash as road construction materials. Department of Transportation, Florida, USA https://rosap.ntl.bts.gov/view/dot/27252

  79. MoRTH (2013) Specifications for Road and Bridge Work. Ministry of Road Transport and Highways, 5th Revision, Indian Roads Congress, New Delhi, India

  80. MoRD (2014) Specifications for Rural Roads. Ministry of Rural Development. 1st Revision, Indian Roads Congress, New Delhi, India

  81. Wu Y, Park F (1998) Aggregate toughness/abrasion resistance and durability/soundness tests related to. Transp Res Rec 1638:85–93

    Article  Google Scholar 

  82. Aburatani S, Matsui T, Kamon M, Wada M (1998) Geotechnical characteristics of incinerated MSW ash reclamation sites of Osaka Bay Phoenix Project. In: Proc. Third Int. Congr. Environ. Geotech. (ICEG III). Environ. Geotech., A.A. Balkema, Rotterdam, Lisbon. pp 95–100

  83. Hajj E, Thavathurairaja J, Stolte S et al (2018) Resilient modulus prediction models of unbound materials for Nevada. https://rosap.ntl.bts.gov/view/dot/36448

  84. Patel S, Shahu JT (2016) Resilient response and permanent strain of steel slag-fly ash-dolime mix. J Mater Civ Eng 28:4016106. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001619

    Article  Google Scholar 

  85. Puppala AJ, Hoyos LR, Potturi A (2011) Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. J Mater Civ Eng 23:990–998. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268

    Article  CAS  Google Scholar 

  86. NCHRP (2004) Guide for mechanistic-empirical design of new and rehabilitated pavement structures. NCHRP 1-37A Final Report. Transp Res Board, Washington

  87. Bakare MD, Rai RR, Patel S, Shahu JT (2019) Environmental sustainability by bulk utilization of fly ash and GBFS as road subbase materials. J Hazardous, Toxic, Radioact Waste 23:4019011. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450

    Article  CAS  Google Scholar 

  88. Balunaini U, Chennarapu H, Thejesh KG (2016) Compaction quality control of pavement layers using LWD. J Mater Civ Eng 28:4015111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001379

    Article  Google Scholar 

  89. Viggiani G, Atkinson JH (1995) Interpretation of bender element tests. Géotechnique 45:149–154. https://doi.org/10.1680/geot.1995.45.1.149

    Article  Google Scholar 

  90. Gu X, Yang J, Huang M, Gao G (2015) Bender element tests in dry and saturated sand: signal interpretation and result comparison. Soils Found 55:951–962. https://doi.org/10.1016/j.sandf.2015.09.002

    Article  Google Scholar 

  91. Menq F Y (2003) Dynamic properties of sandy and gravelly soils. PHD thesis, The University of Texas at Austin, Texas, USA. https://repositories.lib.utexas.edu/handle/2152/779

  92. Puri N, Jain A, Nikitas G et al (2020) Dynamic soil properties and seismic ground response analysis for North Indian seismic belt subjected to the great Himalayan earthquakes. Springer

    Book  Google Scholar 

  93. IRC SP 58 (2001) Guidelines for use of fly ash in road embankments New Delhi

  94. IRC 37 (2018) Guidelines for design of flexible pavements (4th Revision). New Delhi, India

  95. CPWD (2021) Delhi schedule of rates, vol. 1. Central Public Works Department, New Delhi, India. https://cpwd.gov.in/Publication/DSR_2021_VOL_I_ENGLISH_Dir.pdf

  96. Singh A, Vaddy P, Biligiri KP (2020) Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework. Resour Conserv Recycl 161:104953. https://doi.org/10.1016/j.resconrec.2020.104953

    Article  Google Scholar 

  97. Bansal D, Ramana GV, Datta M, Gupta G (2023) Characterization of MSW incineration bottom ash for use as structural fill in reinforced soil structures: geoenvironmental, geotechnical and economical assessment. Waste Manag 168:344–353. https://doi.org/10.1016/j.wasman.2023.06.024

    Article  PubMed  Google Scholar 

  98. Hicks RG, Monismith CL (1971) Resilient properties of granular material. Spons by Comm Strength Deform Charact Pavement Sect Present 50th Annu Meet 345:15–31

  99. Witczak M, Uzan J (1988) The universal airport design system, Rep. I of IV: Granular material characterization. Dept Civ Eng Univ Maryland, Coll Park MD

  100. Uzan J (1985) Granular material characterization. In: Transportation Research Record 1022. Transp Res Board, Natl Res Counc Washington, pp 52–59

Download references

Acknowledgements

The support and assistance provided by M/s Timarpur Okhla Waste Management Company Limit officials, M/s Delhi MSW Solutions Ltd., and South Delhi Municipal Corporation for sample collection are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepesh Bansal.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6556 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, D., Ramana, G.V., Datta, M. et al. Waste to Resource: Enviro-Mechanical Suitability of MSW Incineration Bottom Ash in Flexible Pavements and Embankments. Int. J. of Geosynth. and Ground Eng. 10, 17 (2024). https://doi.org/10.1007/s40891-024-00528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-024-00528-4

Keywords

Navigation