Skip to main content
Log in

Numerical Analyses of the Optimum Length for Stone Column Reinforced Foundation

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

The paper presents 3D numerical simulations that investigate the settlement performance for small groups of stone columns under a rigid circular footing. Particular consideration is given to the effects of stone column installation and load level on the optimum length of the stone columns. The results show that taking into account the installation effect by increasing the lateral earth pressure coefficient of the soil reduces the deformation of the columns and the surrounding soil. This leads not only to a reduction in the settlement of the footing but also to a reduction in the optimum length of the stone columns. This optimum length of columns is not constant, it increases with the increase in the load applied to the footing. However, overestimating the installation effect has a negligible consequence on the footing settlement and the optimum length of columns. In addition, the study shows that, for loads exceeding the working load levels of unreinforced soil, the optimum length of the columns is controlled by the extent of the total shear strains beneath the footing evolving with the applied load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Balaam N, Booker JR (1981) Analysis of rigid rafts supported by granular piles. Int J Numer Anal Meth Geomech 5(4):379–403

    Article  Google Scholar 

  2. Priebe HJ (1995) The design of vibro replacement. Ground Eng 28(10):31

    Google Scholar 

  3. Castro J, Sagaseta C (2009) Consolidation around stone columns. Influence of column deformation. Int J Numer Anal Methods Geomech 33(7):851–877. https://doi.org/10.1002/nag.745

    Article  MATH  Google Scholar 

  4. Pulko B, Majes B, Logar J (2011) Geosynthetic-encased stone columns. Analytical calculation model. Geotext Geomembr 29(1):29–39. https://doi.org/10.1016/j.geotexmem.2010.06.005

    Article  Google Scholar 

  5. Sexton BG, McCabe BA, Castro J (2013) Appraising stone column settlement prediction methods using finite element analyses. Acta Geotech 9(6):993–1011. https://doi.org/10.1007/s11440-013-0260-5

    Article  Google Scholar 

  6. Baumann V, Bauer G (1974) The performance of foundations on various soils stabilized by the vibro-compaction method. Can Geotech J 11(4):509–530

    Article  Google Scholar 

  7. Watts KS, Johnson D, Wood LA, Saadi A (2000) An instrumented trial of vibro ground treatment supporting strip foundations in a variable fill. Geotechnique 50(6):699–708

    Article  Google Scholar 

  8. Corneille S (2007) Étude du comportement mécanique des colonnes ballastées chargées par des semelles rigides. PhD diss, Institut National Polytechnique de Lorraine

  9. Muir Wood D, Hu W, Nash D (2000) Group effects in stone column foundations: model tests. Géotechnique 50(6):689–698

    Article  Google Scholar 

  10. McKelvey D, Sivakumar V, Bell A, Graham J (2004) Modelling vibrated stone columns in soft clay. Proc Inst Civ Eng Geotech Eng 157(3):137–149

    Article  Google Scholar 

  11. McCabe BA, Killeen MM (2016) Small stone-column groups: mechanisms of deformation at serviceability limit state. Int J Geomech 17(5):04016114

    Article  Google Scholar 

  12. Black JA, Sivakumar V, Bell A (2011) The settlement performance of stone column foundations. Géotechnique 61(11):909–922

    Article  Google Scholar 

  13. Shahu J, Reddy Y (2011) Clayey soil reinforced with stone column group: model tests and analyses. J Geotech Geoenviron Eng 137(12):1265–1274

    Article  Google Scholar 

  14. Tan S, Ng K, Sun J (2014) Column group analyses for stone column reinforced foundation. In: From soil behavior fundamentals to innovations in geotechnical engineering: honoring Roy E. Olson, 597–608

  15. Castro J (2014) Numerical modelling of stone columns beneath a rigid footing. Comput Geotech 60:77–87. https://doi.org/10.1016/j.compgeo.2014.03.016

    Article  Google Scholar 

  16. Killeen MM, McCabe BA (2014) Settlement performance of pad footings on soft clay supported by stone columns: a numerical study. Soils Found 54(4):760–776. https://doi.org/10.1016/j.sandf.2014.06.011

    Article  Google Scholar 

  17. Kirsch F (2006) Vibro stone column installation and its effect on ground improvement. In: Triantafyllidis T (ed) Proceedings of the international conference on numerical modelling of construction processes in geotechnical engineering for urban environment, Bochum, Germany. Taylor and Francis Group, London, pp 115–124

  18. Guetif Z, Bouassida M, Debats JM (2007) Improved soft clay characteristics due to stone column installation. Comput Geotech 34(2):104–111. https://doi.org/10.1016/j.compgeo.2006.09.008

    Article  Google Scholar 

  19. Castro J, Karstunen M (2010) Numerical simulations of stone column installation. Can Geotech J 47(10):1127–1138. https://doi.org/10.1139/t10-019

    Article  Google Scholar 

  20. Castro J, Karstunen M, Sivasithamparam N (2014) Influence of stone column installation on settlement reduction. Comput Geotech 59:87–97. https://doi.org/10.1016/j.compgeo.2014.03.003

    Article  Google Scholar 

  21. Sexton BG, McCabe BA (2015) Modeling stone column installation in an elasto-viscoplastic soil. Int J Geotech Eng 9(5):500–512

    Article  Google Scholar 

  22. Benmebarek S, Remadna A, Benmebarek N (2018) Numerical modelling of stone column installation effects on performance of circular footing. Int J Geosynth Ground Eng 4(3):23. https://doi.org/10.1007/s40891-018-0140-z

    Article  Google Scholar 

  23. Remadna A, Benmebarek S (2018) Influence of stone column installation on performance of reinforced foundations. Paper presented at the International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, Egypt, November 24–28. 10.1007/978-3-030-01917-4_17

  24. Sexton BG, McCabe BA (2016) Stone column effectiveness in soils with creep: a numerical study. Geomech Geoeng 11(4):252–269. https://doi.org/10.1080/17486025.2016.1151556

    Article  Google Scholar 

  25. McCabe BA, Nimmons GJ, Egan D (2009) A review of field performance of stone columns in soft soils. Proc Inst Civ Eng Geotech Eng 162(6):323–334. https://doi.org/10.1680/geng.2009.162.6.323

    Article  Google Scholar 

  26. Elsawy MB, El-Garhy B (2017) Performance of granular piles-improved soft ground under raft foundation: a numerical study. Int J Geosynth Ground Eng 3(4):36

    Article  Google Scholar 

  27. Castro J (2014) An analytical solution for the settlement of stone columns beneath rigid footings. Acta Geotech 11(2):309–324. https://doi.org/10.1007/s11440-014-0358-4

    Article  Google Scholar 

  28. Ng KS, Tan SA (2015) Settlement prediction of stone column group. Int J Geosynth Ground Eng 1(4):33. https://doi.org/10.1007/s40891-015-0034-2

    Article  Google Scholar 

  29. Wehr J (2004) Stone columns–single columns and group behavior. In: Proceedings of the 5th international conference on ground improvement techniques, Kuala Lumpur, Malaysia, 22–23 March

  30. Wehr WCS (2006) Stone columns–group behaviour and influence of footing flexibility. In: Proceedings of the 6th European conference on numerical methods in geotechnical engineering. Taylor & Francis, London, pp 767–772

  31. Hu W (1995) Physical modelling of group behaviour of stone column foundations. PhD thesis, University of Glasgow

Download references

Acknowledgements

The authors express their gratitude to the Directorate General for Scientific Research and Technological Development of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeldjalil Remadna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remadna, A., Benmebarek, S. & Benmebarek, N. Numerical Analyses of the Optimum Length for Stone Column Reinforced Foundation. Int. J. of Geosynth. and Ground Eng. 6, 34 (2020). https://doi.org/10.1007/s40891-020-00218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-020-00218-x

Keywords

Navigation