Skip to main content
Log in

Simple braids

  • Review Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study a subset of square free positive braids and we give a few algebraic characterizations of them and one geometric characterization: the set of positive braids whose closures are unlinks. We describe canonical forms of these braids and of their conjugacy classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, U., Berceanu, B.: Canonical form of positive braids. J. Algebra Appl. 14(1), # 1450076 (2015)

  2. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  3. Ashraf, R., Berceanu, B.: Recurrence relations for HOMFLY polynomial and rational specializations (2010). arXiv:1003.1034

  4. Ashraf, R., Berceanu, B., Riasat, A.: Fibonacci numbers and positive braids. Ars Combin. 122, 299–306 (2015). arXiv:1005.1145

    MathSciNet  MATH  Google Scholar 

  5. Ashraf, R., Berceanu, B., Riasat, A.: What could be a simple permutation? (2010). arXiv:1007.3869

  6. Berceanu, B.: Artin algebras—applications in topology. PhD thesis, University of Bucharest (1995) (in Romanian)

  7. Berceanu, B., Nizami, A.R.: Recurrence relation for Jones polynomials. J. Korean Math. Soc. 51(3), 443–462 (2014). arXiv:1002.3735

    Article  MathSciNet  Google Scholar 

  8. Birman, J.: Braids, Links, and Mapping Class Groups. Annals of Mathematics Studies, vol. 82. Princeton University Press, Princeton (1975)

    Book  Google Scholar 

  9. Bokut, L.A., Fong, Y., Ke, W.-F., Shiao, L.S.: Gröbner–Shirshov bases for braid semigroup. In: Shum, K.P., et al. (eds.) Advances in Algebra, pp. 60–72. World Scientific, River Edge (2003)

    Chapter  Google Scholar 

  10. El-Rifai, E.A., Morton, H.R.: Algorithms for positive braids. Q. J. Math. 45(180), 479–497 (1994)

    Article  MathSciNet  Google Scholar 

  11. Garside, F.A.: The braid groups and other groups. Q. J. Math. 20, 235–254 (1969)

    Article  MathSciNet  Google Scholar 

  12. Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247. Springer, New York (2008)

    Book  Google Scholar 

  13. Lickorish, W.B.R.: An Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 175. Springer, New York (1997)

    Book  Google Scholar 

  14. Moran, S.: The Mathematical Theory of Knots and Braids. North-Holland Mathematics Studies, vol. 82. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  15. Paris, L.: Braid groups and Artin groups. In: Papadopoulos, A. (ed.) Handbook on Teichmüller Theory, vol. II. EMS, Zürich (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbu Berceanu.

Additional information

In memoriam Ştefan Papadima.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by Higher Education Commission of Pakistan.

Appendix

Appendix

In this section we consider only positive braids: we compute the left least common multiple \((\mathrm{lcm}_{\,\mathrm L})\) of a generator \(x_{i}\) and of the very simple braid, U(ab) and D(cd) respectively. The simplest case appears in Garside [11].

Lemma 7.1

(Garside) Suppose that .

  1. (a)

    If \(|i-j|\geqslant 2\), then .

  2. (b)

    If \(i+1=j\), then \(x_{i}x_{i+1}x_{i}=x_{i+1}x_{i}x_{i+1}\,|_{\mathrm{L}}\,\beta \).

Lemma 7.2

  1. (a)

    If \(x_{i}x_{i+1},x_{i+2}\in \mathrm{Div}_{\mathrm{L}}(\beta )\), then \(x_{i}x_{i+1}(x_{i+2}x_{i+1})=x_{i+2}(x_{i} x_{i+1}x_{i+2})\,|_{\mathrm{L}}\,\beta \).

  2. (b)

    if \(x_{i+1}x_{i+2},x_{i}\in \mathrm{Div}_{\mathrm{L}}(\beta )\), then \(x_{i}(x_{i+1} x_{i}x_{i+2}x_{i+1})=x_{i+1}x_{i+2}(x_{i}x_{i+1} x_{i+2})\,|_{\mathrm{L}}\,\beta \).

  3. (c)

    if \(x_{i+2}x_{i+1},x_{i}\in \mathrm{Div}_{\mathrm{L}}(\beta )\), then \(x_{i}(x_{i+2} x_{i+1}x_{i})=x_{i+2}x_{i+1}x_{i}(x_{i+1})\,|_{\mathrm{L}}\,\beta \).

  4. (d)

    if \(x_{i+1}x_{i},x_{i+2}\in \mathrm{Div}_{\mathrm{L}}\beta \), then \(x_{i+1}x_{i}(x_{i +2}x_{i+1}x_{i})=x_{i+2}(x_{i+1}x_{i}x_{i+2} x_{i+1})\,|_{\mathrm{L}}\,\beta \).

Proof

(a): Garside Lemma (a) implies that , therefore \(x_{i+2}\,|_{\mathrm{L}}\,x_{i+1} \beta '\), and case (b) of Garside Lemma implies that .

(b): Garside Lemma (b) implies \(x_{i+1}x_{i+2}\beta ' =\beta =x_{i+1}x_{i}x_{i+1}\beta ^{'''}\), therefore \(x_{i}x_{i+1}\) and \(x_{i+2}\) are left divisors of \(x_{i+2}\beta '\); case (a) of this lemma gives the result.

(c) and (d) can be checked in a similar way. \(\square \)

Using Lemmas 7.1 and 7.2 one can start an induction to prove the next results (or one can find a proof in [1]).

Proposition 7.3

Suppose that \(x_{i},U(a,b)\in \mathrm{Div}_{\mathrm{L}}(\beta )\), \(a+1\leqslant b\). We have the following implications:

  1. (a)

    if \(i\notin \mathrm{e}\text {-}\mathrm{supp} U(a,b)\), then ;

  2. (b)

    if \(i=a-1\), then ;

  3. (c)

    if \(i=a\), then \(\mathrm{lcm}_{\,\mathrm L}(x_{a},U(a,b))=U(a,b)\);

  4. (d)

    if \(i\in [a+1,b]\), then ;

  5. (e)

    if \(i=b+1\), then .

Proposition 7.4

Suppose that \(x_{i},D(c,d)\in \mathrm{Div}_{\mathrm{L}} (\beta )\ (c\geqslant d+1)\). We have the following implications:

  1. (a)

    if \(i\notin \mathrm{e}\text {-}\mathrm{supp}D(c,d)\) then ;

  2. (b)

    if \(i=d-1\), then ;

  3. (c)

    if \(i\in [d,c-1]\), then ;

  4. (d)

    if \(i=c\), then \(\mathrm{lcm}_{\,\mathrm L}(x_{c},D(c,d))=D(c,d)\);

  5. (e)

    if \(i=c+1\), then .

Proposition 7.5

Given and a cycle \(\gamma \), , we have the following implications:

  1. (a)

    if \(x_{b-1}\,|_{\mathrm{L}}\,\gamma \beta \), then \(x_{b-1}\,|_{\mathrm{L}}\,\beta \);

  2. (b)

    if \(x_{e+1}\,|_{\mathrm{L}}\,\gamma \beta \), then \(x_{e+1}\,|_{\mathrm{L}}\,\beta \).

Proof

Induction on the length of \(\gamma \) and Garside Lemma 7.1 give the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, R., Berceanu, B. Simple braids. European Journal of Mathematics 6, 646–660 (2020). https://doi.org/10.1007/s40879-020-00404-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-020-00404-1

Keywords

Mathematics Subject Classification

Navigation