Skip to main content
Log in

Partially ample subvarieties of projective varieties

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

The goal of this article is to define partially ample subvarieties of projective varieties, generalizing Ottem’s work on ample subvarieties, and also to show their ubiquity. As an application, we obtain a connectedness result for pre-images of subvarieties by morphisms, reminiscent to a problem posed by Fulton–Hansen in the late 1970s. Similar criteria are not available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arapura, D.: Partial regularity and amplitude. Amer. J. Math. 128(4), 1025–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bott, R.: On a theorem of Lefschetz. Michigan Math. J. 6, 211–216 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98, 480–497 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchsbaum, D., Eisenbud, D.: Generic free resolutions and a family of generically perfect ideals. Adv. Math. 18(3), 245–301 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debarre, O.: Théorèmes de connexité pour les produits d’espaces projectifs et les grassmanniennes. Amer. J. Math. 118(6), 1347–1367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faltings, G.: Formale geometrie und homogene Räume. Invent. Math. 64(1), 123–165 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulger, M., Lehmann, B.: Positive cones of dual cycle classes. Algebraic Geom. 4(1), 1–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulton, W., Hansen, J.: A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings. Ann. Math. 110(1), 159–166 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halic, M.: Subvarieties with partially ample normal bundle. Math. Z. https://doi.org/10.1007/s00209-018-2175-1

  11. Halic, M., Tajarod, R.: About the cohomological dimension of certain stratified varieties. Proc. Amer. Math. Soc. 145(12), 5157–5167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hansen, J.: A connectedness theorem for flagmanifolds and Grassmannians. Amer. J. Math. 105(3), 633–639 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  15. Hironaka, H., Matsumura, H.: Formal functions and formal embeddings. J. Math. Soc. Japan 20, 52–82 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hyry, E., Järvilehto, T.: Coefficient ideals and the Gorenstein property of blowups. Comm. Algebra 33(12), 4617–4629 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawasaki, T.: On macaulayfication of Noetherian schemes. Trans. Amer. Math. Soc. 352(6), 2517–2552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kollár, J.: Higher direct images of dualizing sheaves. I. Ann. Math. 123(1), 11–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matsumura, S.: Asymptotic cohomology vanishing and a converse to the Andreotti–Grauert theorem on surfaces. Ann. Inst. Fourier (Grenoble) 63(6), 2199–2221 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ogus, A.: Local cohomological dimension of algebraic varieties. Ann. Math. 98, 327–365 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ottem, J.Chr.: Ample subvarieties and \(q\)-ample divisors. Adv. Math. 229(5), 2868–2887 (2012)

  22. Peternell, Th.: Submanifolds with ample normal bundles and a conjecture of Hartshorne. In: Bates, D.J., et al. (eds.) Interactions of Classical and Numerical Algebraic Geometry. Contemporary Mathematics, vol. 496, pp. 317–330. American Mathematical Society, Providence (2009)

  23. Sommese, A.J.: Submanifolds of Aabelian varieties. Math. Ann. 233(3), 229–256 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Totaro, B.: Line bundles with partially vanishing cohomology. J. Eur. Math. Soc. (JEMS) 15(3), 731–754 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Halic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Background material

Appendix A: Background material

1.1 A.1 Cohomological q-ampleness

This notion was introduced by Arapura and Totaro.

Definition A.1

Let Y be a projective scheme, an ample line bundle.

  1. (i)

    ([24, Theorem 7.1]) An invertible sheaf \({\mathscr {L}}\) on Y is q-ample if, for any coherent sheaf \({\mathscr {G}}\) on X, holds: there exists \(\mathop {\mathrm{ct}}^{{\mathscr {G}}}\) such that for all \(a\geqslant \mathop {\mathrm{ct}}^{{\mathscr {G}}}\) and all \(t>q\), .

    It is enough to verify the property for

    figure j

    , \(k\geqslant 1\) (cf. [24, Theorem 6.3, 7.1]).

  2. (ii)

    ([2, Lemmas 2.1, 2.3]) A locally free sheaf \({\mathscr {E}}\) on Y is q-ample if \({\mathscr {O}}_{\mathbb {P}({\mathscr {E}}^\vee )}(1)\) on is q-ample. It is equivalent saying that, for any coherent sheaf \({\mathscr {G}}\) on Y, there is such that:

    figure k

    , for all \(t>q\) and all \(a\geqslant \mathop {\mathrm{ct}}^{{\mathscr {G}}}\).

    The q-amplitude of\({\mathscr {E}}\), denoted by \(q^{\mathscr {E}}\), is the smallest integer q with this property. Note that \({\mathscr {E}}\) is q-ample if and only if so is \({\mathscr {E}}_{Y_{\mathrm{red}}}\) (cf. [24, Corollary 7.2]). Also, any locally free quotient \({\mathscr {F}}\) of \({\mathscr {E}}\) is still q-ample; indeed, .

1.2 A.2 q-Positivity

Proposition A.2

([23, Proposition 1.7]) For a globally generated, locally free sheaf \({\mathscr {E}}\) on Y, the following statements are equivalent:

  1. (i)

    \({\mathscr {E}}\) is q-ample (cf. Definition A.1);

  2. (ii)

    The fibres of the morphism \(\mathbb {P}({\mathscr {E}}^\vee )\rightarrow |{\mathscr {O}}_{\mathbb {P}({\mathscr {E}}^\vee )}(1)|\) are at most q-dimensional.

We say that \({\mathscr {E}}\) is Sommese-q-ample if it satisfies any of these conditions.

Definition A.3

(cf. [1]) Suppose X is a smooth, complex projective variety. A line bundle \({\mathscr {L}}\) on X is q-positive, if it admits a Hermitian metric whose curvature is positive definite on a subspace of \({\mathscr {T}}_{X,x}\) of dimension at least \(\dim X-q\), for all \(x\in X\); equivalently, the curvature has at each point \(x\in X\) at most q negative or zero eigenvalues.

Theorem A.4

  1. (i)

    ([1, Proposition 28]) q-positive line bundles are q-ample.

  2. (ii)

    ([19, Theorem 1.4]) Assume \({\mathscr {E}}\) is globally generated. Then it holds:

    $$\begin{aligned} {\mathscr {E}}\text { is Sommese-}q\text {-ample}\;\;\Longleftrightarrow \;\; {\mathscr {O}}_{\mathbb {P}({\mathscr {E}}^\vee )}(1)\text { is }q\text {-positive.} \end{aligned}$$
  3. (iii)

    ([3, 21]) Let be q-positive and \(Y\in |{\mathscr {L}}|\) a smooth divisor. Then it holds:

    figure l

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halic, M. Partially ample subvarieties of projective varieties. European Journal of Mathematics 6, 400–419 (2020). https://doi.org/10.1007/s40879-019-00325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-019-00325-8

Keywords

Mathematics Subject Classification

Navigation