Skip to main content
Log in

Twisted symmetric differentials and the quadric algebra of subvarieties of \(\mathbb {P}^N\) of low codimension

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

A smooth subvariety \(X\subset \mathbb {P}^N\) has for each \(\alpha \in \mathbb Q\) an associated algebra \(Q(X,\alpha )\!\!=\bigoplus _{m\alpha \in \mathbb Z}H^0(X,S^m[\Omega _X^1(\alpha )])\). The algebra Q(X, 0) is the the intrinsic algebra of symmetric differentials and Q(X, 1) is called the algebra of twisted symmetric differentials. We show that when X is a complete intersection of dimension , then the algebra of twisted symmetric differentials is the quadric algebra of X, i.e. . The same isomorphism is shown without the complete intersection assumption if X is of codimension two and \(\dim X\geqslant 3\). We establish an identification of the twisted symmetric m-differentials on X with the tangentially homogeneous polynomials relative to X of degree m. The lack of the hypothesis of X being a complete intersection is dealt with results on the properties of the vanishing locus of tangentially homogeneous polynomials and algebraic geometric properties of the tangent-secant variety of X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogomolov, F.A.: Families of curves on a surface of general type. Dokl. Akad. Nauk SSSR 236(5), 1041–1044 (1977) (in Russian)

  2. Bogomolov, F., De Oliveira, B.: Hyperbolicity of nodal hypersurfaces. J. Reine Angew. Math. 596, 89–101 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Bogomolov, F., De Oliveira, B.: Symmetric tensors and geometry of \(\mathbb{P}^N\) subvarieties. Geom. Funct. Anal. 18(3), 637–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brotbek, D.: Symmetric differential forms on complete intersection varieties and applications. Math. Ann. 366(1–2), 417–466 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunebarbe, Y., Klingler, B., Totaro, B.: Symmetric differentials and the fundamental group. Duke Math. J. 162(14), 2797–2813 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debarre, O.: Varieties with ample cotangent bundle. Compositio Math. 141(6), 1445–1459 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eisenbud, D., Harris, J.: 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  8. Fischer, G., Piontkowski, J.: Ruled Varieties. Advanced Lectures in Mathematics. Vieweg, Braunschweig (2001)

    Book  MATH  Google Scholar 

  9. Griffiths, P., Harris, J.: Algebraic geometry and local differential geometry. Ann. Sci. l’Ecole Norm. Sup. 12(3), 355–452 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables, vol. II. Wadsworth Brooks/Cole, Monterey (1990)

    MATH  Google Scholar 

  11. Hartshorne, R.: Varieties of small codimension in projective space. Bull. Amer. Math. Soc. 80, 1017–1032 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ionescu, P., Russo, F.: Manifolds covered by lines and the hartshorne conjecture for quadratic manifolds. Amer. J. Math. 135(2), 349–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwak, S.: Smooth threefolds in \(\mathbb{P}^5\) without apparent triple or quadruple points and a quadruple-point formula. Math. Ann. 320(4), 649–664 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Landsberg, J.M.: On degenerate secant and tangential varieties and local differential geometry. Duke Math. J. 85(3), 605–634 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ran, Z.: On projective varieties of codimension 2. Invent. Math. 73(2), 333–336 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Russo, F.: On the Geometry of Some Special Projective Varieties. Lecture Notes of the Unione Matematica Italiana, vol. 18. Springer, Cham (2016)

    Book  Google Scholar 

  17. Schneider, M.: Symmetric differential forms as embedding obstructions and vanishing theorems. J. Algebraic Geom. 1(2), 175–181 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Zak, F.L.: Tangents and Secants of Algebraic Varieties. Translations of Mathematical Monographs, vol. 127. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno De Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Oliveira, B., Langdon, C. Twisted symmetric differentials and the quadric algebra of subvarieties of \(\mathbb {P}^N\) of low codimension. European Journal of Mathematics 5, 454–475 (2019). https://doi.org/10.1007/s40879-018-0265-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-0265-6

Keywords

Mathematics Subject Classification

Navigation