Skip to main content
Log in

Powers of Jacobi triple product, Cohen’s numbers and the Ramanujan \({\Delta }\)-function

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that the eighth power of the Jacobi triple product is a Jacobi–Eisenstein series of weight 4 and index 4 and we calculate its Fourier coefficients. As applications we obtain explicit formulas for the eighth powers of theta-constants of arbitrary order and the Fourier coefficients of the Ramanujan \({\Delta }\)-function \({\Delta }(\tau )=\eta ^{24}(\tau ),\eta ^{12}(\tau )\) and \(\eta ^{8}(\tau )\) in terms of Cohen’s numbers H(3, N) and H(5, N). We give new formulas for the number of representations of integers as sums of eight higher figurate numbers. We also calculate the sixteenth and the twenty-fourth powers of the Jacobi theta-series using the basic Jacobi forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cléry, F., Gritsenko, V.: Siegel modular forms of genus 2 with the simplest divisor. Proc. London Math. Soc. 102(6), 1024–1052 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cléry, F., Gritsenko, V.: Modular forms of orthogonal type and Jacobi theta-series. Abh. Math. Semin. Univ. Hamburg 83(2), 187–217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, H.: Sums involving the values at negative integers of \(L\)-functions of quadratic characters. Math. Ann. 217(3), 271–285 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the \(K3\) surface and the Mathieu group \(M_{24}\). Exp. Math. 20(1), 91–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics, vol. 55. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  6. Gritsenko, V.: Elliptic genus of Calabi–Yau manifolds and Jacobi and Siegel modular forms. St. Petersburg Math. J. 11(5), 781–804 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Gritsenko, V.: Complex vector bundles and Jacobi forms. In: Automorphic Forms. Proceedings of RIMS Symposium, vol. 1103, pp. 71–85. Kyoto (1999). arXiv: math/9906191

  8. Gritsenko, V.: Jacobi Modular Forms: 30 ans après. Course of Lectures on Internet Platform COURSERA (2016/2017)

  9. Gritsenko, V., Hulek, K., Sankaran, G.K.: Moduli spaces of irreducible symplectic manifolds. Compositio Math. 146(2), 404–434 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gritsenko, V., Poor, C., Yuen, D.S.: Borcherds products everywhere. J. Number Theory 148, 164–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gritsenko, V.A., Nikulin, V.V.: Automorphic forms and Lorentzian Kac–Moody algebras. II. Internat. J. Math. 9(2), 201–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Igusa, J.: On Siegel modular forms of genus two. Amer. J. Math. 84(1), 175–200 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacobi, C.G.J.: Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti (1829). Reprinted in Jacobi’s Gesammelte Werke, vol. 1, Reimer, Berlin, pp. 49–239 (1881–1891). Reprinted by Chelsea, New York (1969)

  14. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  15. Milne, S.C.: Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6(1), 7–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics, vol. 28. Birkhäuser, Boston (1983)

    Book  MATH  Google Scholar 

  17. Ono, K., Robins, S., Wahl, P.T.: On the representation of integers as sums of triangular numbers. Aequationes Math. 50(1–2), 73–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Skoruppa, N.-P.: Modular forms. Appendix I. In: Hirzebruch, F., Berger, T., Jung, R. (eds.) Manifolds and Modular Forms. Aspects of Mathematics, vol. E20, pp. 121–161. Vieweg, Braunschweig (1992)

    Google Scholar 

  19. Skoruppa, N.-P.: Fourier coefficients of Siegel modular forms. http://data.countnumber.de/Siegel-Modular-Forms/Sp4Z/

  20. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Modular Functions of One Variable, VI. Lecture Notes in Mathematics, vol. 627, pp. 105–169. Springer, Berlin (1977)

Download references

Acknowledgements

The subject of this work is closely related to the course of lectures “Jacobi modular forms: 30 ans après” (see [8]) given by the first author in the Laboratory of Algebraic Geometry of the Department of Pure Mathematics of HSE in Moscow in 2015–2016. In this course, an explicit formula for the eighth power of the Jacobi triple product was mentioned as a possible application. We express our gratitude to all participants of the course, and especially to Dimitry Adler who was a research assistant of the course, and Guillaume Bioche who prepared a tex file of the lectures. The authors are grateful to reviewers for many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Gritsenko.

Additional information

The study has been funded by the Russian Academic Excellence Project ‘5-100’. The second author was supported by LabEx CEMPI, Lille.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, V., Wang, H. Powers of Jacobi triple product, Cohen’s numbers and the Ramanujan \({\Delta }\)-function. European Journal of Mathematics 4, 561–584 (2018). https://doi.org/10.1007/s40879-017-0185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0185-x

Keywords

Mathematics Subject Classification

Navigation