Skip to main content
Log in

Dynamic Characterization of Textile Composites Part II: Bi-axial Tension

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Part II of this two part paper is concerned with the need to understand the multiaxial response of textile composite materials as compared to the uniaxial response seen in part I. In this paper, a test methodology is introduced to create a a dynamic multiaxial stress state on composite plates. Shock loading of plain woven textile composite materials is studied using a novel technique to induce damage initiation at the crown of the sample, where a biaixal state of stress is present. Both fiberglass and carbon fiber materials are tested at different shock strengths to understand if the failure mode changes at increased shock strengths. The results show the influence of both rate and the multiaxial stress state on the failure strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen Y, Clausen AH, Hopperstad OS, Langseth M (2009) Stressstrain behavior of aluminum alloys at a wide range of strain rates. Int J Solids Struct 46(21):3825–3835

    Article  Google Scholar 

  2. Oosterkamp L, Ivankovic A, Venizelos G (2000) High strain rate properties of selected aluminium alloys. Mater Sci Eng 278(12):225–235

    Article  Google Scholar 

  3. Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32(14):541–560

    Article  Google Scholar 

  4. Zhang X, Li H, Li H, Gao H, Gao Z, Liu Y, Liu B (2008) Dynamic property evaluation of aluminum alloy 2519a by split Hopkinson pressure bar. Trans Nonferrous Met Soc China 18(1):1–5

    Article  Google Scholar 

  5. Broomhead P, Grieve RJ (1982) The effect of strain rate on the strain to fracture of sheet steel under biaxial tensile stress conditions. J Eng Mater Technol 104:101–106

    Article  Google Scholar 

  6. Pickett AK, Pyttel T, Payen F, Lauro F, Petrinic N, Werner H, Christlein J (2004) Failure prediction for advanced crashworthiness of transportation vehicles. Int J Impact Eng 30(7):853–872

    Article  Google Scholar 

  7. Grolleau V, Gary G, Mohr D (2008) Biaxial testing of sheet materials at high strain rates using viscoelastic bars. Exp Mech 48:293–306

    Article  Google Scholar 

  8. Ramezani M, Ripin ZM (2010) Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus. J Mater Process Technol 210(8):1061–1069

    Article  Google Scholar 

  9. Stoffel M, Schmidt R, Weichert D (2001) Shock wave-loaded plates. Int J Solids Struct 38(4243):7659–7680

    Article  Google Scholar 

  10. Mouritz AP (1995) The effect of underwater explosion shock loading on the fatigue behaviour of grp laminates. Composites 26(1):3–9

    Article  Google Scholar 

  11. Mouritz AP (1995) The damage to stitched fGRPg laminates by underwater explosion shock loading. Compos Sci Technol 55(4):365–374

    Article  Google Scholar 

  12. LeBlanc J, Shukla A (2010) Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: an experimental and computational study. Compos Struct 92(10):2421–2430

    Article  Google Scholar 

  13. LeBlanc J, Shukla A (2011) Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons. Compos Struct 93(11):3072–3081

    Article  Google Scholar 

  14. Schiffer A, Tagarielli VL (2015) The response of circular composite plates to underwater blast: experiments and modeling. J Fluids Struct 52:130–144

    Article  Google Scholar 

  15. Tekalur S, Shivakumar K, Shukla A (2008) Mechanical behavior and damage evolution in e-glass vinyl ester and carbon composites subjected to static and blast loads. Compos B 39(1):57–65

    Article  Google Scholar 

  16. Tekalur S, Bogdanovich A, Shukla A (2009) Shock loading response of sandwich panels with 3-d woven e-glass composite skins and stitched foam core. Compos Sci Technol 69(6):736–753

    Article  Google Scholar 

  17. Wang E, Gardner N, Shukla A (2009) The blast resistance of sandwich composites with stepwise graded cores. Int J Solids Struct 46(1819):3492–3502

    Article  Google Scholar 

  18. Jackson M, Shukla A (2011) Performance of sandwich composites subjected to sequential impact and air blast loading. Compos B 42(2):155–166

    Article  Google Scholar 

  19. LeBlanc J, Shukla A, Rousseau C, Bogdanovich A (2007) Shock loading of three-dimensional woven composite materials. Compos Struct 79(3):344–355

    Article  Google Scholar 

  20. Tekalur S, Shukla A, Shivakumar K (2008) Blast resistance of polyurea based layered composite materials. Compos Struct 84(3):271–281

    Article  Google Scholar 

  21. Pankow M, Justusson B, Salvi A, Waas AM, Yen CF, Ghiorse S (2011) Shock response of 3D woven composites: an experimental investigation. Compos Struct 93(5):1337–1346

    Article  Google Scholar 

  22. Pankow M, Waas AM, Yen CF, Ghiorse S (2011) Shock loading of 3d woven composites: a validated finite element investigation. Compos Struct 93(5):1347–1362

    Article  Google Scholar 

  23. Justusson B, Pankow M, Heinrich C, Rudolph M, Waas AM (2013) Use of a shock tube to determine the bi-axial yield of aluminum alloy under high rates. Int J Impact Eng 58:55–65

    Article  Google Scholar 

  24. Rathakrishnan E (2010) Applied Gas Dynamics. Wiley, Hoboken

    Google Scholar 

  25. Lang E, Chou TW (1998) The effect of strain gage size on measurement errors in textile composite materials. Compos Sci Technol 58(34):539–548

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Army Research Laboratories, Aberdeen proving ground, for their continued financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pankow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Justusson, B., Marek, J., Waas, A. et al. Dynamic Characterization of Textile Composites Part II: Bi-axial Tension. J. dynamic behavior mater. 4, 268–281 (2018). https://doi.org/10.1007/s40870-018-0165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-018-0165-3

Keywords

Navigation