Skip to main content

Advertisement

Log in

Experimental and Computational Damage and Ejecta Studies of Pb Explosively Shock Loaded to \(P_{SL} \approx 32\)- to 40-GPa

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

We report results from an experiment on Pb that we explosively shock loaded to \(P_{SL} \approx 32\)- and 43-GPa, in a single experiment. These \(P_{SL}\) caused the Pb sample to isentropically release to either a liquid or mixed solid–liquid phase post-shock. The post-shock sample damage and dynamics were diagnosed with proton radiography, which gave quantitative damage data within three distinct regions. The first region is the particle (ejecta) cloud, where we observed that total areal mass ejected from the shocked Pb surface is in-dependent of the peak \(P_{SL}\) for unsupported (Taylor wave) shockwave loading. The second region, which exhibits spall and cavitation, distends and disperses as the shocked coupon self-similarly expands subsequent to the shockwave impulse and the release into tension. The third region includes undamaged, full density Pb sample. We report quantitative observations from all three regions, and we used the data to evaluate and validate damage and ejecta models, which satisfactorily describe the observed experimental dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. \(a_0\) is half the peak-to-valley depth \(A_0\) of the periodic features—think of a sinusoidal shape characterized by its wavelength and amplitude.

References

  1. Richtmyer RD (1960) Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math 13:297–319

    Article  Google Scholar 

  2. Meshkov EE (1969) Instability in shock-accelerated boundary separating two gasses. Izv AN SSSR, Mekh Zhidk Gasa 4(5):151–157

    Google Scholar 

  3. Asay JR (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29:284–287

    Article  Google Scholar 

  4. Asay JR (1978) A model for estimating the effects of surface roughness on mass ejection from shocked materials. Tech Rep SAND-78-1256, Sandia National Laboratories, Albuquerque, NM

  5. Andriot P, Chapron P, Olive F (1982) Ejection of material from shocked surfaces of tin, tantalum, and lead alloys. AIP Conf Proc 78:505–509

    Google Scholar 

  6. Cheret R, Chapron P, Elias P, Martineau J (1985) Shock waves in condensed matter. In: Gupta YM (ed) Mass ejection from the free surface of shock loaded metallic samples. Plenum, New York

    Google Scholar 

  7. Couch R, Shaw L, Barlett R, Steinmetz L, Behrendt W, Firpo C (1985) Surface properties of shocked lead. J Phys Colloques 46(C5):385–393. doi:10.1051/jphyscol:1985549

  8. Elias P, Bizeuil C, Chapron P, Mondot M (1987) Flash X-ray radiography applied to experimental studies in detonics. SPIE Conf Proc 0702:215–218

    Article  Google Scholar 

  9. Ogorodnikov VA, Ivanov AG, Mikhailov AL, Kryukov NI, Tolochko AP, Golubev VA (1998) Particle ejection from the shocked free surface of metals and diagnostic methods of these particles. Combust Explo Shock Waves 34(6):696–700

    Article  Google Scholar 

  10. Vogan WS, Anderson WW, Grover M, Hammerberg JE, King NSP, Lamoreaux SK, Macrum G, Morley KB, Rigg PA, Stevens GD, Turley WD, Veeser LR, Buttler WT (2005) Piezoelectric characterization of ejecta from shocked tin surfaces. J Appl Phys 98:113508

    Article  Google Scholar 

  11. Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102:013522; (2008) Erratum: Effects of shock-breakout pressure on ejection of material from shocked tin surfaces [(2007) J. Appl. Phys. 102, 013522-1-10]. J Appl Phys 103:109901

  12. Zellner MB, Buttler WT (2008) Exploring Richtmyer–Meshkov instability phenomena and ejecta cloud physics. Appl Phys Lett 93:114102

    Article  Google Scholar 

  13. Zellner MB, Dimonte G, Germann TC, Hammerberg JE, Rigg PA, Stevens GD, Turley WD, Buttler WT (2009) Influence of shockwave profile on ejecta. AIP Conf Proc 1195:1047–1050

    Article  Google Scholar 

  14. Zellner MB, Byers M, Hammerberg JE, Germann TC, Dimonte G, Rigg PA, Stevens GD, Turley WD, Buttler WT (2009) Influence of shockwave profile on ejection of micron-scale material from shocked Sn surfaces: an experimental study. In: DYMAT 2009—9th Int. Conf. on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, vol 1, pp 89–94

  15. Ogorodnikov VA, Mikhaĭlov AL, Burtsev VV, Lobastov SA, Erunov SV, Romanov AV, Rudnev AV, Kulakov EV, Bazarov YuB, Glushikhin VV, Kalashnik IA, Tsyganov VA, Tkachenko BI (2009) Detecting the ejection of particles from the free surface of a shock-loaded sample. J Exp Theor Phys 109:530–535

    Article  Google Scholar 

  16. Chen Y, Hu H, Tang T, Ren G, Li Q, Wang R, Buttler WT (2012) Experimental study of ejecta from shock melted lead. J Appl Phys 111:053509

    Article  Google Scholar 

  17. Mikhailov AL, Ogorodnikov VA, Sasik VS, Raevskii VA, Lebedev AI, Zotov DE, Erunov Syrunin MA, Sadunov VD, Nevmerzhitskii NV, Lobastov SA, Burtsev VV, Mishanov AV, Kulakov EV, Satarova AV, Georgievskaya AB, Knyazev VN, Kleshchevnikov OA, Antipov MV, Glushikhin VV, Yurtov IV, Utenkov AA, Sen’kovskii ED, Abakumov SA, Presnyakov DV, Kalashnik IA, Panov KN, Arinin VA, Tkachenko BI, Filyaev VN, Chapaev AV, Andramanov AV, Lebedeva MO, Igonin VV (2014) Experimental-calculation simulation of the ejection of particles from a shock-loaded surface. J Exp Theor Phys 118:785–797

    Article  Google Scholar 

  18. Monfared SK, Oró DM, Grover M, Hammerberg JE, La Lone BM, Pack CL, Schauer MM, Stevens GD, Stone JB, Turley WD, Buttler WT (2014) Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection. J Appl Phys 116:063504

    Article  Google Scholar 

  19. Antipov MV, Georgievskaya AB, Igonin VV, Lebedev AI, Lebedeva MO, Panov KN, Raevsky VA, Sadunov VD, Utenkov AA, Yurtov IV (2013) The model of particle ejection from a metal free surface. In: Proc Inter Conf – XVII Khariton’s topical scientific reading: extreme states of substance. Detonation. Shock waves, pp. 666–674

  20. Antipov MV, Arinin VA, Georgievskaya AB, Gnutov IS, Zamyslov DN, Kalashnikov DA, Lebedeva MO, Lebedev AI, Panov KN, Raevsky VA, Tkachenko BI, Utenkov AA, Fedorov AV, Finyushin SV, Chudakov EA, Yurtov IV (2015) Some results of investigations of particle ejection from a free surface of metals under a shock wave effect. In: Proc Int Conf—XVII Khariton’s topical scientific reading: extreme states of substance. Detonation. Shock waves, pp. 702–709

  21. Buttler WT, Oró DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:60–84

    Article  Google Scholar 

  22. Georgievskaya AB, Raevsky VA (2012) Estimation of the spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shockwave effect. AIP Conf Proc 1426:1007–1010

    Article  Google Scholar 

  23. Durand O, Soulard L (2012) Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method. J Appl Phys 111:044901

    Article  Google Scholar 

  24. Shao J-L, Wang P, He A-M (2014) Microjetting from a grooved Al surface under supported and unsupported shocks. J Appl Phys 116:073501

    Article  Google Scholar 

  25. Cherne FJ, Hammerberg JE, Andrews MJ, Karkhanis V, Ramaprabhu P (2015) On Shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum. J Appl Phys 118:185901

    Article  Google Scholar 

  26. Cummins H, Knable N, Gampel L, Yeh Y (1963) Frequency shifts in light diffracted by ultrasonic waves in liquid media. Appl Phys Lett 2:62–64

    Article  Google Scholar 

  27. Cummins HZ, Knable N, Yeh Y (1963) Spurious harmonic generation in optical heterodyning. Appl Opt 2:823–825

    Article  Google Scholar 

  28. Yeh Y, Cummins HZ (1964) Localized fluid flow measurements with an HeNe laser spectrometer. App Phys Lett 4:176–178

    Article  Google Scholar 

  29. Forman JW Jr, George EW, Lewis RD (1965) Measurement of localized fluid flow velocities in gases with a laser Doppler flowmeter. Appl Phys Lett 7:77–78

    Article  Google Scholar 

  30. Strand OT, Goosman DR, Martinez C, Whitworth TL (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instr 77:083108

    Article  Google Scholar 

  31. Ogorodnikov VA, Mikhailov AL, Sasik VS, Erunov SV, Syrunin MA, Fedorov AV, Nevmerzhitskii NV, Kulakov EV, Kleshchevnikov OA, Antipov MV, Yurtov IV, Rudnev AV, Chapaev AV, Pupkov AS, Sen’kovskii ED, Sotskov EA, Glushikhin VV, Kalashnik IA, Finyushin SA, Chudakov EA, Kalashnikov DA (2016) Effect of a gas on the ejection of particles from the free surface of a sample subjected to a shock wave with various intensities. J Exp Theor Phys 150:357–362

    Article  Google Scholar 

  32. McMillan CF (1986) Size measurements of high velocity particle distributions. Proc SPIE 674:289–297

    Article  Google Scholar 

  33. Monfared SK, Buttler WT, Frayer DK, Grover M, La Lone BM, Stevens GD, Stone JB, Turley WD, Schauer MM (2015) Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments. J Appl Phys 117:223105

    Article  Google Scholar 

  34. Sorenson DS, Minich RW, Romero JW, Tunnell TW, Malone RM (2002) Ejecta particle size distributions for shock-loaded Sn and Al metals. J Appl Phys 92:5830–5836

    Article  Google Scholar 

  35. Nevmerzhitskii NV, Mikhailov AL, Raevsky VA, Sasik VS, et al (2010) Microscopic electron-optical registration of particle ejection from free surface shocked lead. VANT Theor Appl Phys 3

  36. Sorenson DS, Pazuchanics P, Johnson RP, Malone RM, Kaufman MI, Tibbitts A, Tunnell T, Marks D, Capelle GA, Grover M, Marshall B, Stevens GD, Turley WD, La Lone B (2014) Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line Fraunhofer holography. Los Alamos National Laboratory Tech Rep LA-UR-14-24722

  37. Sorenson DS, Pazuchanics P, Johnson RP, Malone RM, Kaufman MI, Tunnell T, Smalley D, Marks D, Grover M, Marshall B, Stevens GD, Turley WD, LaLone B, Capelle GA (2015) Ejecta Particle-Size Measurements from the Break-Up of Micro-Jets in Vacuum and Helium Gas Using Ultraviolet In-Line Fraunhofer Holography. Los Alamos National Laboratory Tech Rep LA-UR-15-25993

  38. Fedorov AV, Mikhailov AL, Finyushin SA, Kalashnikov DA, Chudakov EA, Butusov EI, Gnutov IS (2016) Detection of the multiple spallation parameters and the internal structure of a particle cloud during shock-wave loading of a metal. J Exp Theor Phys 122:685–688

    Article  Google Scholar 

  39. Andriyash AV, Astashkin MV, Baranov VK, Golubinskii AG, Irinichev DA, Knodrat’ev AN, Kuratov SE, Mazanov BA, Rogozkin DB, Stepushkin SN, Khatunkin VYu (2016) Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory. J Exp Theor Phys 122:970–983

    Article  Google Scholar 

  40. Asay JR (1978) Thick-plate technique for measuring ejecta from shock surfaces. J Appl Phys 49:6173–6175

    Article  Google Scholar 

  41. Antipov YuM, Afonin AG, Vasilevsky AV, Gusev IA, Demyanchuk VI, Zyat’kov OV, Ignashin NA, Karshev YuG, Larionov AV, Maksimov AV, Matyushin AA, Minchenko AV, Mikheev MS, Mirgorodskii VA, Peleshko VN, Rud’ko VD, Terekhov VI, Tyurin NE, Fedotov YuS, Trutnev YuA, Burtsev VV, Volkov AA, Ivanin IA, Kartanov SA, Kuropatkin YuP, Mikhailov AL, Mikhailyukov KL, Oreshkov OV, Rudnev AV, Spirov GM, Syrunin MA, Tatsenko MV, Tkachenko IA, Khramov IV (2010) A radiographic facility for the 70-GeV proton accelerator of the Institute for high energy physics. Instr Exp Tech 53:319–326

    Article  Google Scholar 

  42. Zellner MB, Vogan-McNeil W, Gray GT III, Huerta DC, King NSP, Neal GE, Valentine SJ, Payton JR, Rubin J, Stevens GD, Turley WD, Buttler WT (2008) Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces. J Appl Phys 103:083521

    Article  Google Scholar 

  43. Ferm EN, Mariam F, Proton Radiography Team LANSCE (2005) Proton radiography observations of the failure of a detonation wave to propagate to the end of a conical explosive charge. AIP Conf Proc 845:968–971

  44. Morris C, Hopson JW, Goldstone P (2006) Proton radiography. Los Alamos Science 30:32–45. http://la-science.lanl.gov/lascience30.shtml

  45. Schall R (1957) X-ray flash measurements on shock waves in solids. In: Proceedings of the Third Congress on High Speed Photography, London

  46. Toropova TA, Yanilkin YV (1994) Method of two-dimensional calculation of multicomponent medium taking into account a material strength. VANT Math Model Phys Proc 4

  47. Zhernokletov MV, Zubarev VN, Telegin GS (1969) Expansion isentropes of the explosion products of condensed explosives. J Appl Mech Tech Phys 10:650–655. doi:10.1007/BF00916229

    Article  Google Scholar 

  48. Mie G (1903) Zur kinetischen theorie der einatomigen korper. Ann Phys 316(8):657–697

    Article  Google Scholar 

  49. Gruneisen G (1912) Theorie des festen zustandes einatomiger elemente. Ann Phys 344:257–306

    Article  Google Scholar 

  50. Kopyshev AB, Medvedev AB (1993) Thermodynamic model of dense and heated matter. Sov Technol Rev B 5(2):37–93

    Google Scholar 

  51. Kanel GI, Savinykh AS, Garkushin GB, Razorenov SV (2015) Dynamic strength of tin and lead melts. J Exp Theor Phys Lett 102(8):615–619

    Article  Google Scholar 

  52. Georgievskaya AB, Raevsky VA (2015) Influence of shock wave profile on ejecta distribution by sizes (calculated and theoretical investigations). In: Proc Int Conf—XVII Khariton’s topical scientific reading: extreme states of substance. Detonation. Shock waves, pp. 709–716

  53. Holtkamp DB, Clark DA, Ferm EN, Gallegos RA, Hammon D, Hemsing WF, Hogan GE, Holmes VH, King NSP, Liljestrand R, Lopez RP, Merrill FE, Morris KB, Murray MM, Pazuchanics PD, Prestridge KP, Quintana JP, Saunders A, Schafer T, Shinas MA, Stacy HL (2003) A survey of high explosive-induced damage and spall in a selected metals using proton radiography. AIP Conf Proc 706:477–482

    Article  Google Scholar 

  54. Kedrinsky VK (2000) Hydrodynamics of explosion: experiment and models. Publ House of RAS SB, Novosibirsk

    Google Scholar 

  55. Grady DE, Kipp ME (1985) Mechanisms of dynamic fragmentation: factors governing fragment size. Mech Mater 4(3–4):311–320

    Article  Google Scholar 

  56. Ivanov AG, Raevsky VA, Vorontsova OS (1995) On the contribute of elastic and inertial forces for dynamic fracture. DYMAT 2:63–68. doi:10.1007/BF00755751

    Google Scholar 

  57. Sedov LI (1976) Mechanics of continuous medium. Publ. Moscow: Science, vol 1

  58. Schwarzkopf JD, Balachandar S, Buttler WT (2017) Compressible multiphase flow. In: Multiphase Flow Handbook. CRC Press, Boca Raton

Download references

Acknowledgements

The authors extend thanks to VI Skokov for the sincere and keen interest in this effort, and to the big team of RFNC-VNIIEF personnel for the arrangements for and performance of the experiments, namely: to IA Tkachenko, MV Tatsenko, SA Kartanov, KL Mikhailyukov, AA Gorodnov, AN Belonogov, VN Filyaiev, AN Cherayev, MA Kaganov, ED Vishnevetsky, AP Tsoy, YuN Yegorochev, SA Yankov, AV Zemlyanikin, OA Kleshchevnikov, OV Medvedev, VV Sankin, DS Mironov, VA Chernov, and IHEP personnel (Protvino) for the organization of the work and performance of the measurements, and to II Shmakov for the fabrication of samples, and to OI Seliverstova for translation of the article into English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Georgievskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, M.V., Arinin, V.A., Georgievskaya, A.B. et al. Experimental and Computational Damage and Ejecta Studies of Pb Explosively Shock Loaded to \(P_{SL} \approx 32\)- to 40-GPa. J. dynamic behavior mater. 3, 300–315 (2017). https://doi.org/10.1007/s40870-017-0113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0113-7

Keywords

Navigation