Skip to main content
Log in

Strain Rate Effects in Polymer Matrix Composites Under Shear Loading: A Critical Review

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

A critical review of behavior of polymer matrix composites under high strain rate shear loading is presented. A brief review of experimental methods used to investigate the dynamic shear properties of composites are included. Experimental results obtained by various researchers for high strain rate shear properties of polymer matrix composites are discussed and compared for both unidirectional and woven fabric composites. The effect of strain rate on the in-plane and interlaminar shear properties is summarized by giving a property change factor, the ratio of the value at high strain rate compared with the value at quasi-static loading. Possible damage mechanisms and modes are also discussed. For unidirectional composites the property change factor for in-plane shear strength and shear modulus ranges between 1.26 and 1.82 and 0.39–1.25 respectively and for interlaminar shear strength and modulus ranges between 0.71 and 1.47 and 0.87–0.98 respectively. On the other hand, for woven fabric composites the property change factor for in-plane shear strength and shear modulus ranges between 0.79 and 1.75 and 0.12–1.75 respectively and for interlaminar shear strength and modulus ranges between 1.55 and 1.70 and 1.24–1.33 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chawla KK (2012) Composite materials: science and engineering, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  2. Sierakowski RL (1997) Strain rate effects in composites. Appl Mech Rev 50(11):741–761

    Article  Google Scholar 

  3. Al-Hassani STS, Kaddour AS (1998) Strain rate effects on GRP KRP and CFRP composite laminates. Key Eng Mater 141–143:427–452

    Article  Google Scholar 

  4. Hamouda AMS, Hashmi MSJ (1998) Testing of composite materials at high rates of strain: advances and challenges. J Mater Process Technol 77(1):327–336

    Article  Google Scholar 

  5. Jacob GC, Starbuck JM, Fellers JF, Simunovic S, Boeman RG (2004) Strain rate effect on the mechanical properties of polymer composite materials. J Appl Polym Sci 94(1):296–301

    Article  Google Scholar 

  6. Siviour CR, Jordan JL(2016) High strain rate mechanics of polymers: a review. J Dyn Behav Mater 2(1):15–32

    Article  Google Scholar 

  7. Saba N et al (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  Google Scholar 

  8. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York, pp 27–31

    Book  Google Scholar 

  9. Hopkinson J (1901) On the rupture of iron wire by a blow (1872) Article 38 Original Papers-by the late John Hopkinson. In: Hopkinson (ed) Scientific papers B, vol II. Cambridge University Press, Cambridge, pp 316–320

  10. Hopkinson J (1902) Further experiments on the rupture of iron wire (1872) Article 39 Original Papers-by the late John Hopkison. In: Hopkinson (ed) Scientific papers B, vol II. Cambridge University Press, Cambridge, pp 316–320

  11. Hopkinson B (1904–1905) The effects of momentary stresses in metals. Proc R Soc London Sect A 74:498–506

  12. Hopkinson B (1913) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc London Sect A 213:437–456

    Article  Google Scholar 

  13. Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62:676–700

    Article  Google Scholar 

  14. Walley S, Eakins D (2014) Introduction to the theme issue ‘Shock and blast’: celebrating the centenary of Bertram Hopkinson’s seminal paper of 1914. Philos Trans R Soc A 372:20130220

    Article  Google Scholar 

  15. Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250

    Article  Google Scholar 

  16. Harding J, Wood EO, Campbell JD (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2(2):88–96

    Article  Google Scholar 

  17. Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effect in 1100-0 Aluminum. J Appl Mech 38(1):83–91

    Article  Google Scholar 

  18. Sierakowski RL, Chaturvedi SK (1997) Dynamic loading and characterization of fiber-reinforced composites. Willey, New York, pp 15–99

  19. Nemat-Nasir S (2000) Introduction to high strain rate testing. ASM Handbook, vol 8. Mechanical testing and evaluation. ASM International, Materials Park, pp 427–529

    Google Scholar 

  20. Nemat-Nasir S (2000) High strain rate tension and compression tests. ASM Handbook, vol 8. Mechanical testing and evaluation. ASM International, Materials Park, pp 429–446

    Google Scholar 

  21. Nemat-Nasir S (2000) High strain rate shear testing. ASM Handbook, vol 8. Mechanical testing and evaluation. ASM International, Materials Park, pp 447–461

    Google Scholar 

  22. Al-Mousawi MM, Reid SR, Deans WF (1997) The use of the split Hopkinson pressure bar techniques in high strain rate materials testing. P I Mech Eng C 211C:273–292

    Article  Google Scholar 

  23. Gray III GT (2000) Classic split Hopkinson pressure bar testing. ASM Handbook, vol 8. Mechanical testing and evaluation. ASM International, Materials Park, pp 462–476

    Google Scholar 

  24. Gray III GT (2000) Split Hopkinson pressure bar testing of soft materials. ASM Handbook, vol 8. Mechanical testing and evaluation ASM International, Materials Park, pp 488–496

    Google Scholar 

  25. Naik NK, Kavala VR (2008) High strain rate behavior of woven fabric composites under compressive loading. Mater Sci Eng A 474(1–2):301–311

    Article  Google Scholar 

  26. Srinivasan AT, Shukla A, Martin SK, Lee W (2009) Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading. Constr Build Mater 23(5):1795–1802

    Article  Google Scholar 

  27. Chen WW (2016) Experimental methods for characterizing dynamic response of soft materials. J Dyn Behav Mater 2(1):2–14

    Article  Google Scholar 

  28. Werner SM, Dharan CKH (1986) The dynamic response of graphite fiber-epoxy laminates at high shear strain rates. J Compos Mater 20(4):365–374

    Article  Google Scholar 

  29. Hsiao HM, Daniel IM, Cordes RD (1999) Strain rate effects on the transverse compressive and shear behavior of unidirectional composites. J Compos Mater 33(17):1620–1642

    Article  Google Scholar 

  30. Papadakis N, Reyonolds N, Pharaoh MW, Wood PKC, Smith GF (2004) Strain rate effects on the shear mechanical properties of a highly oriented thermoplastic composites material using a contacting displacement measurement methodology—part A: elasticity and shear strength. Compos Sci Technol 64(5):729–738

    Article  Google Scholar 

  31. Bouette B, Cazenuve C, Oytana C (1992) Effect of strain rate on interlaminar shear properties of carbon/epoxy composites. Compos Sci Technol 45(4):313–321

    Article  Google Scholar 

  32. Dong L, Harding J (1994) A single-lap shear specimen for determining the effect of strain rate on the interlaminar shear strength of carbon fibre-reinforced laminates. Composites 25(2):129–138

    Article  Google Scholar 

  33. Naik NK, Yernamma P, Thoram NM, Gadipatri R, Kavala VR (2010) High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polym Test 29(1):14–22

    Article  Google Scholar 

  34. Baker WE, Yew CH (1966) Strain-rate effects in the propagation of torsional plastic waves. J Appl Mech 33(4):917–923

    Article  Google Scholar 

  35. Naik NK, Gadipatri R, Thoram NM, Kavala VR (2010) Shear properties of epoxy under high strain rate loading. Polymer Eng Sci 50(4):780–788

  36. Frantz RA, Duffy J (1972) Dynamic stress–strain behavior in torsion of 1100-0 aluminum subjected to a sharp increase in strain rate. J Appl Mech 39(4):939–945

    Article  Google Scholar 

  37. Lewis JL, Campbell JD (1972) The development and use of a torsional Hopkinson-bar apparatus. Exp Mech 12(11):520–524

    Article  Google Scholar 

  38. Hartley KA, Duffy J, Hawley RW (1985) The torsional Kolsky (Split-Hopkinson) bar. ASM metal handbook, vol 8. ASM International, Materials Park, pp 218–228

    Google Scholar 

  39. Gilat A, Cheng CS (2000) Torsional split Hopkinson bar tests at strain rates above 104 s–1. Exp Mech 40(1):55–59

    Article  Google Scholar 

  40. Yulong L, Ramesh KT, Chin ESC (2004) The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations. Mater Sci Eng A 382(1–2):162–170

    Google Scholar 

  41. Naik NK, Asmelash A, Kavala VR, Veerraju Ch (2007) Interlaminar shear properties of polymer matrix composites: strain rate effect. Mech Mater 39(12):1043–1052

    Article  Google Scholar 

  42. Gelu TA, Joshi SS, Naik NK (2011) Shear properties of acrylic under high strain rate loading. J Appl Polym Sci 121(3):1631–1639

    Article  Google Scholar 

  43. Canova GR (1980) Determination of work hardening laws and study of flow localization in torsion, M. Eng thesis. University of McGill, Canada

  44. Gowtham HL, Pothnis JR, Ravikumar G, Naik NK (2015) Dependency of dynamic interlaminar shear strength of composites on test technique used. Polym Test 42:151–159

    Article  Google Scholar 

  45. Leber H, Lifshitz JM (1996) Interlaminar shear behavior of plain-weave GRP at static and high rates of strain. Compos Sci Technol 56(4):391–405

    Article  Google Scholar 

  46. Dai LH, Bai YL, Lee SWR (1998) Material response and failure mechanism of unidirectional metal matrix composites under impulsive shear loading. Key Eng Mater 141–143:651–670

    Article  Google Scholar 

  47. Sayers KH, Harris B (1973) Interlaminar shear strength of a carbon fibre reinforced composite material under impact conditions. J Compos Mater 7(1):129–133

    Article  Google Scholar 

  48. Dhaliwal GS, Newaz GM (2016) Effect of layer structure on dynamic response and failure characteristics of carbon fiber reinforced aluminum laminates (CARALL). J Dyn Behav Mater 2:399–409

    Article  Google Scholar 

  49. Harizi W et al (2015) Study of the dynamic response of polymer-matrix composites using an innovative hydraulic crash machine. J Dyn Behav Mater 1(4):359–369

    Article  Google Scholar 

  50. Ganesh VK, Naik NK (1997) (±45) degree off-axis tension test for shear characterization of plain weave fabric composites. J Compos Technol Res 19(2):77–87

    Article  Google Scholar 

  51. Chamis CC, Sinclair JH (1977) Ten-deg off-axis test for shear properties in fiber composites. Exp Mech 17(9):339–346

    Article  Google Scholar 

  52. Pindera MJ, Herakovich CT (1986) Shear characterization of unidirectional composites with the off-axis tension test. Exp Mech 26(1):103–112

    Article  Google Scholar 

  53. Shokrieh MM, Omidi MJ (2009) Investigation of strain rate effects on in-plane shear properties of glass/epoxy composites. Compos Struct 91(1):95–102

    Article  Google Scholar 

  54. Daniel IM, LaBedz RH, Liber T (1981) New method for testing composites at very high strain rates. Exp Mech 21(2):71–77

    Article  Google Scholar 

  55. Barre S, Chotard T, Benzeggagh ML (1996) Comparative study of strain rate effects on mechanical properties of glass fibre reinforced thermoset matrix composites. Compos Part A 27 A(12):1169–1181

    Article  Google Scholar 

  56. Hsiao HM, Daniel IM (1998) Strain rate behavior of composite materials. Compos Part B 29B(5):521–533

    Article  Google Scholar 

  57. Koerber H, Xavier J, Camanho PP (2010) High strain rate characterization of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 42:1004–1009

  58. Ishiguro Y, Akatsu T, Tanabe Y, Yasuda E (1999) Strain rate dependence on the shear strength of unidirectional carbon/carbon composites. Key Eng Mater 166(1):139–142

    Article  Google Scholar 

  59. Salvi AG, Chung J, Waas AM (2003) Strain-rate effects on unidirectional carbon-fiber composites. AIAA J 41:2020–2028

    Article  Google Scholar 

  60. Papadakis N, Reyonolds N, Pharaoh MW, Wood PKC, Smith GF (2004) Strain rate dependency of the shear properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology—part B: shear damage evaluation. Compos Sci Technol 64(5):739–748

    Article  Google Scholar 

  61. Tsai JL, Sun CT (2005) Strain rate effect on in-plane shear strength of unidirectional polymeric composites. Compos Sci Technol 65(9):1941–1947

    Article  Google Scholar 

  62. Raju KS, Dandayudhapani S (2008) Characterization of in-plane shear properties of laminated composites at medium strain rates. J Aircraft 45(2):493–497

    Article  Google Scholar 

  63. Chiem CY, Liu ZG (1988) The relationship between tensile strength and shear strength in composite materials subjected to high strain rates. J Eng Mater Technol 110(2):191–194

    Article  Google Scholar 

  64. Hou JP, Ruiz C (2000) Measurement of the properties of woven CFRP T300/914 at different strain rates. Compos Sci Technol 60(15):2829–2834

    Article  Google Scholar 

  65. Okoli OI, Smith GF (2000) High strain rate characterization of a glass/epoxy composite. J Compos Tech Res 22(1):3–11

    Article  Google Scholar 

  66. Brown KA, Brooks R, Warrior NA (2010) The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos Sci Technol 70(2):272–283

    Article  Google Scholar 

  67. Gowtham HL, Pothnis JR, Ravikumar G, Naik NK (2013) High strain rate in-plane shear behavior of composites. Polym Test 32:1334–1341

    Article  Google Scholar 

  68. Harding J, Dong L (1994) Effect of strain rate on the interlaminar shear strength of carbon-fibre reinforced laminates. Compos Sci Technol 51(3):347–358

    Article  Google Scholar 

  69. Dai LH, Bai YL, Lee S-WR (1998) Experimental investigation of the shear strength of a unidirectional carbon/aluminum composite under dynamic torsional loading. Compos Sci Technol 58(10):1667–1673

    Article  Google Scholar 

  70. Hallett SR, Ruiz C, Harding J (1999) The effect of strain rate on the interlaminar shear strength of a carbon/epoxy cross-ply laminate: comparison between experiment and numerical prediction. Compos Sci Technol 59(5):749–758

    Article  Google Scholar 

  71. Harding J, Li YL (1992) Determination of interlaminar shear strength for glass/epoxy and carbon/epoxy laminates at impact rates of strain. Compos Sci Technol 45(2):161–171

    Article  Google Scholar 

  72. Lifshitz JM, Leber H (1998) Response of fiber-reinforced polymers to high strain-rate loading in interlaminar tension and combined tension/shear. Compos Sci Technol 58(6):987–996

    Article  Google Scholar 

  73. Ray BC (2006) Loading rate sensitivity of glass fiber–epoxy composite at ambient and sub-ambient temperatures. J Reinf Plast Compos 25(3):329–333

    Article  Google Scholar 

  74. Sethi S, Panda PK, Nayak R, Ray BC (2012) Experimental studies on mechanical behavior and microstructural assessment of glass/epoxy composites at low temperatures. J Reinf Plast Compos 31(2):77–84

    Article  Google Scholar 

  75. Williamson DM, Siviour CR, Proud WG, Palmer SJP, Govier R, Ellis K, Blackwell P, Leppard C (2008) Temperature-time response of a polymer bonded explosive in compression (EDC37). J Phys D Appl Phys 41:085404

    Article  Google Scholar 

  76. Williamson DM, Hamilton NR, Palmer SJP, Jardine AP, Leppard C (2014) Thermodynamic work of adhesion measurements of polymer bonded explosive constituents via the Wilhelmy plate technique and their application to AFM pull-off experiments. J Phys Conf Ser 500:112068

    Article  Google Scholar 

  77. Latillade JL, Delaet M, Collombet F, Wolff C (1996) Effect of interlaminar shear loading rate on the damage of multi-ply composites. Int J Impact Eng 18(6):679–699

    Article  Google Scholar 

  78. Okoli OI (2001) The effects of strain rate and failure modes on the failure energy of fibre reinforced composites. Compos Struct 54(2–3):299–303

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by Indian Institute of Technology Bombay and the College of Engineering and Computing at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addis Kidane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidane, A., Gowtham, H.L. & Naik, N.K. Strain Rate Effects in Polymer Matrix Composites Under Shear Loading: A Critical Review. J. dynamic behavior mater. 3, 110–132 (2017). https://doi.org/10.1007/s40870-017-0098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0098-2

Keywords

Navigation