Skip to main content
Log in

Two-dimensional modelling of free-surface flows in presence of a spherical object using the Modified Volume of Fluid technique

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

In this paper, a two-dimensional numerical simulation of water entry of a spherical object is achieved using the Modified Volume of Fluid (MVOF) technique. Continuity and Navier–Stokes equations along with an equation for tracking the free-surface motion are considered as the governing equations for 2D incompressible fluid flow. The free-surface deformation is modelled via integration of the fast fictitious domain method into the MVOF technique. The computational domain includes everywhere even the spherical object where the governing equations are solved. A rigid motion of the spherical object is generated by applying the linear and angular conservation laws. To exert the no-slip condition on the solid–liquid interface implicitly, the viscosity of the region arranged within the solid object is increased artificially. The numerical results obtained using the MVOF method are compared with those of the experiments in the literature and the conventional Volume of Fluid method. The results show that the effects of the artificial compression term on the free-surface deformation is very dominant for coarse meshes while this factor becomes minor for fine meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  2. D.L. Youngs, Time-dependent multi-material flow with large fluid distortion. In Numerical Methods in Fluid Dynamics (Academic, New York, 1982)

  3. J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199, 465–502 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Shirani, N. Ashgriz, J. Mostaghimi, Interface pressure calculation based on conservation of momentum for front capturing methods. J. Comput. Phys. 203, 154–175 (2005)

    Article  MATH  Google Scholar 

  5. M. Marek, W. Aniszewski, A. Boguslawski, Simplified volume of fluid method (SVOF) for two-phase flows. Task Q. 12, 255–265 (2008)

    Google Scholar 

  6. P.A. Ferdowsi, M. Bussmann, Second-order accurate normals from height functions. J. Comput. Phys. 227, 9293–9302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Afkhami, M. Bussmann, Height functions for applying contact angles to 2D VOF simulations. Int. J. Numer. Methods Fluids 57, 453–472 (2008)

    Article  MATH  Google Scholar 

  8. S. Afkhami, M. Bussmann, Height functions for applying contact angles to 3D VOF simulations. Int. J. Numer. Methods Fluids 61, 827–847 (2009). https://doi.org/10.1002/fld.1974

    Article  MathSciNet  MATH  Google Scholar 

  9. K.K. So, X.Y. Hu, N.A. Adams, Anti-diffusion method for interface steepening in two-phase incompressible flow. J. Comput. Phys. 230, 5155–5177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y.M. Ahmed, Numerical simulation for the free surface flow around a complex ship hull form at different Froude numbers. Alex. Eng. J. 50, 229–235 (2011). https://doi.org/10.1016/j.aej.2011.01.017

    Article  Google Scholar 

  11. I. Mirzaii, M. Passandideh-Fard, Modeling free surface flows in presence of an arbitrary moving object. Int. J. Multiph. Flow 39, 216–226 (2012)

    Article  Google Scholar 

  12. M.J. Ketabdari, H. Saghi, Development of volume of fluid methods to model free surface flow using new advection algorithm. J. Braz. Soc. Mech. Sci. Eng. 35, 479–491 (2013)

    Article  Google Scholar 

  13. D. Markus, M. Arnold, R. Wüchner, K.-U. Bletzinger, A Virtual Free Surface (VFS) model for efficient wave-current CFD simulation of fully submerged structures. Coast. Eng. 89, 85–98 (2014). https://doi.org/10.1016/j.coastaleng.2014.04.004

    Article  Google Scholar 

  14. A. Ghasemi, A. Pathak, M. Raessi, Computational simulation of the interactions between moving rigid bodies and incompressible two-fluid flows. Comput. Fluids 94, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Kawano, A simple volume-of-fluid reconstruction method for three-dimensional two-phase flows. Comput. Fluids 134, 130–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Pathak, M. Raessi, A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method. J. Comput. Phys. 311, 87–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Iranmanesh, M. Passandideh-Fard, A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique. Ocean Eng. 130, 557–566 (2017). https://doi.org/10.1016/j.oceaneng.2016.12.018

    Article  Google Scholar 

  18. A. Iranmanesh, M. Passandideh-Fard, A 2D numerical study on suppressing liquid sloshing using a submerged cylinder. Ocean Eng. 138, 55–72 (2017). https://doi.org/10.1016/j.oceaneng.2017.04.022

    Article  Google Scholar 

  19. V.-T. Nguyen, W.-G. Park, A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows. Comput. Fluids 152, 104–119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.-Y. Tsui, C.-Y. Liu, S.-W. Lin, Coupled level-set and volume-of-fluid method for two-phase flow calculations. Numer. Heat Transf. B 71, 173–185 (2017)

    Article  Google Scholar 

  21. B.B.M. Kassar, J.N.E. Carneiro, A.O. Nieckele, Curvature computation in volume-of-fluid method based on point-cloud sampling. Comput. Phys. Commun. 222, 189–208 (2018)

    Article  MathSciNet  Google Scholar 

  22. S. Mirjalili, C.B. Ivey, A. Mani, Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Int. J. Multiph. Flow 116, 221–238 (2019)

    Article  MathSciNet  Google Scholar 

  23. J.M. Robey, E.G. Puckett, Implementation of a volume-of-fluid method in a finite element code with applications to thermochemical convection in a density stratified fluid in the earth’s mantle. Comput. Fluids 190, 217–253 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.M. Aly, Z.A.S. Raizah, Coupled fluid–structure interactions of natural convection in a ferrofluid using ISPH method. Alex. Eng. J. 58, 1499–1516 (2019). https://doi.org/10.1016/j.aej.2019.12.004

    Article  Google Scholar 

  25. S. Sun, G.X. Wu, G. Xu, Free fall water entry of a wedge tank into calm water in three degrees of freedom. Appl. Ocean Res. 92, 101920 (2019). https://doi.org/10.1016/j.apor.2019.101920

    Article  Google Scholar 

  26. R. Hascoët, N. Jacques, Y.-M. Scolan, A. Tassin, A two-dimensional analytical model of vertical water entry for asymmetric bodies with flow separation. Appl. Ocean Res. 92, 101878 (2019). https://doi.org/10.1016/j.apor.2019.101878

    Article  Google Scholar 

  27. C.E. Papoutsellis, M.L. Yates, B. Simon, M. Benoit, Modelling of depth-induced wave breaking in a fully nonlinear free-surface potential flow model. Coast. Eng. 154, 103579 (2019). https://doi.org/10.1016/j.coastaleng.2019.103579

    Article  Google Scholar 

  28. M. Mirzaei, H. Taghvaei, A.A. Golneshan, Improvement of cavity shape modeling in water-entry of circular cylinders by considering the cavity memory effect. Appl. Ocean Res. 97, 102073 (2020). https://doi.org/10.1016/j.apor.2020.102073

    Article  Google Scholar 

  29. F.H. Harlow, A.A. Amsden, Fluid Dynamics: A LASL Monograph (Mathematical Solutions for Problems in Fluid Dynamics) (Los Alamos Science Laboratory, 1971)

  30. G. Cerne, S. Petelin, I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow. J. Comput. Phys. 171, 776–804 (2001)

    Article  MATH  Google Scholar 

  31. H. Lee, S.H. Rhee, A dynamic interface compression method for VOF simulations of high-speed planning watercraft. J. Mech. Sci. Technol. 29, 1849–1857 (2015)

    Article  Google Scholar 

  32. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. I. Aleinov, E.G. Puckett, Computing surface tension with high-order kernels. In Proceedings of the 6th International Symposium on Computational Fluid Dynamics, 1995, pp. 13–18

  34. J.M. Aristoff, T.T. Truscott, A.H. Techet, J.W.M. Bush, The water entry of decelerating spheres. Phys. Fluids 22, 32102 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iranmanesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranmanesh, A., Passandideh-Fard, M. Two-dimensional modelling of free-surface flows in presence of a spherical object using the Modified Volume of Fluid technique. Mar Syst Ocean Technol 17, 123–134 (2023). https://doi.org/10.1007/s40868-022-00117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-022-00117-y

Keywords

Navigation