Skip to main content
Log in

Brackets, superalgebras and spectral gap

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The purpose of this survey is to discuss Poisson and contact brackets and related infinite dimensional superalgebras. All vector spaces are considered over the field of complex numbers \({\mathbb {C}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ademollo, M., et al.: Supersymmetric strings and color confinement. Phys. Lett. 62B, 105–110 (1976)

    Article  Google Scholar 

  2. Bakalov, B., D’Andrea, A., Kac, V.G.: Theory of finite pseudoalgebras. Adv. Math. 162(1), 1–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billig, Y., Futorny, V.: Classification of irreducible representations of Lie algebra of vector fields on a torus. J. Reine Angew. Math. 720, 199–216 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cantarini, N., Kac, V.G.: Classification of linearly compact simple Jordan and generalized Poisson superalgebras. J. Algebra 313(1), 100–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, S.-J., Kac, V.G.: A new \(N=6\) superconformal algebra. Commun. Math. Phys. 186(1), 219–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161(1), 245–265 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fattori, D., Kac, V.G.: Classification of finite simple Lie conformal superalgebras. J. Algebra 258(1), 23–59 (2002). (Special issue in celebration of Claudio Procesi’s 60th birthday)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grozman, P., Leites, D., Shchepochkina, I.: Lie superalgebras of string theories. Acta Math. Vietnam 26(1), 27–63 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  10. Kac, V.G., Martinez, C., Zelmanov, E.: Graded simple Jordan superalgebras of growth one. Mem. Am. Math. Soc. 150(711), x+140 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Kac, V.G. van de Leur, J.W.: On classification of superconformal algebras. In: Strings ’88 (College Park, MD, 1988), pp. 77–106. World Scientific Publishing, Teaneck (1989)

  12. Kac, V.: Vertex Algebras for Beginners, University Lecture Series, vol. 10. American Mathematical Society, Providence (1997)

    Google Scholar 

  13. Kantor, I.L.: Certain generalizations of Jordan algebras. Trudy Sem. Vektor. Tenzor. Anal. 16, 407–499 (1972)

    MathSciNet  MATH  Google Scholar 

  14. Kantor, I.L.: Connection Between Poisson Brackets and Jordan and Lie Superalgebras, Lie Theory, Differential Equations and Representation Theory (Montreal, PQ, 1989), pp. 213–225. University of Montréal, Montreal (1990)

    MATH  Google Scholar 

  15. Kaplansky, I., Santharoubane, L.J.: Harish-Chandra modules over the Virasoro algebra. In: Infinite-Dimensional Groups with Applications (Berkeley, California, 1984), Mathematical Sciences Research Institute Publications, vol. 4, pp. 217–231. Springer, New York (1985)

  16. Koecher, M.: Imbedding of Jordan algebras into Lie algebras. I. Am. J. Math. 89, 787–816 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lubotzky, A.: Expander graphs in pure and applied mathematics. Bull. Am. Math. Soc. (N.S.) 49(1), 113–162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Martínez, C., Zelmanov, E.: Specializations of Jordan superalgebras. Can. Math. Bull. 45(4), 653–671 (2002). (Dedicated to Robert V. Moody)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martínez, C., Zelmanov, E.: Representation theory of Jordan superalgebras. I. Trans. Am. Math. Soc. 362(2), 815–846 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martí nez, C., Zelmanov, E.I.: Lie superalgebras graded by \(P(n)\) and \(Q(n)\). Proc. Natl. Acad. Sci. USA 100(14), 8130–8137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin, C., Piard, A.: Classification of the indecomposable bounded admissible modules over the virasoro lie algebra with weightspaces of dimension not exceeding two. Commun. Math. Phys. 150(3), 465–493 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martinez, C., Zelmanov, E.: Simple finite-dimensional Jordan superalgebras of prime characteristic. J. Algebra 236(2), 575–629 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mathieu, O.: Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math. 107(2), 225–234 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neveu, A., Schwarz, J.H.: Factorizable dual model of pions. Nucl. Phys. B 31(1), 86–112 (1971)

    Article  Google Scholar 

  25. Ramond, P.: Dual theory for free fermions. Phys. Rev. D (3) 3, 2415–2418 (1971)

    Article  MathSciNet  Google Scholar 

  26. Schoutens, K.: A nonlinear representation of the \(d=2\) SO(4) extended superconformal algebra. Phys. Lett. B 194, 75–80 (1987)

    Article  MathSciNet  Google Scholar 

  27. Schwimmer, A., Seiberg, N.: Comments on the n = 2, 3, 4 superconformal algebras in two dimensions. Phys. Lett. B 184(2), 191–196 (1987)

    Article  MathSciNet  Google Scholar 

  28. Tits, J.: Une classe d’algèbres de Lie en relation avec les algèbres de Jordan. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24, 530–535 (1962)

    Article  MATH  Google Scholar 

  29. Tits, J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction. Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28, 223–237 (1966)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been partially supported by the Projects MTM 2017-83506-C2-2-P from the Ministry of Economy of Spain and FC-GRUPIN-IDI/2018/000193 from the Principado de Asturias, the second author gratefully acknowledges the support by the NSF Grant DMS 160 1920.

Author information

Authors and Affiliations

Authors

Contributions

CM, EZ designed research, performed research, and wrote the paper.

Corresponding author

Correspondence to Consuelo Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

To our friend and colleague Ivan Shestakov with respect and affection..

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The survey is based on our forthcoming paper with O. Mathieu. The authors thank him for useful discussions during the preparation of the survey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, C., Zelmanov, E. Brackets, superalgebras and spectral gap. São Paulo J. Math. Sci. 13, 112–132 (2019). https://doi.org/10.1007/s40863-019-00128-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00128-5

Keywords

Mathematics Subject Classification

Navigation