Skip to main content
Log in

Combinatorial micro–macro dynamical systems

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The second law of thermodynamics states that the entropy of an isolated system is almost always increasing. We propose combinatorial formalizations of the second law and explore their conditions of possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, V., Avez, A.: Ergodic Problems of Classical Mechanics. Addison-Wesley, Redwood (1989)

    MATH  Google Scholar 

  2. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree Like Structures. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Blandin, H., Díaz, R.: Rational combinatorics. Adv. Appl. Math. 44, 107–126 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bruers, S.: A discussion on maximum entropy production and information theory. J. Phys. A: Math. Theor. 40, 7441–7450 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Carroll, S.: From Eternity to Here: The Quest for the Ultimate Theory of Time. Penguin, New York (2010)

    Google Scholar 

  6. Castillo, E., Diaz, R.: Rota–Baxter categories. Int. Electron. J. Algebra 5, 27–57 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cercignani, C.: Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  8. Cerino, L., Cecconi, F., Cencini, M., Vulpiani, A.: The role of the number of degrees of freedom and chaos in macroscopic irreversibility. Physica A 442, 486–497 (2016)

    Google Scholar 

  9. Chibbaro, S., Rondoni, L., Vulpiani, A.: Reductionism. Emergence and Levels of Reality. Springer, Berlin (2014)

    MATH  Google Scholar 

  10. Cover, T., Thomas, J.: Elements of Information Theory. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  11. Crooks, G.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999)

    Google Scholar 

  12. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  13. Dewar, R.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, 371–381 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Deward, R.: Maximum entropy production and non-equilibrium statistical mechanics. In: Kleidon, A., Lorenz, R. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy, pp. 41–55. Springer-Verlag, Berlin (2005)

    Google Scholar 

  15. Dewar, R., Maritan, A.: The second law, maximum entropy production and Liouville’s theorem, preprint, arXiv:1107.1088

  16. Díaz, R., Pariguan, E.: Super, quantum and noncommutative species. Afr. Diasp. J. Math. 8, 90–130 (2009)

    MATH  Google Scholar 

  17. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    MATH  Google Scholar 

  18. Evans, D., Searle, D.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002)

    Google Scholar 

  19. Feynman, R.: Statistical Mechanics. Perseus Books, Cambridge (1972)

    Google Scholar 

  20. Frigg, R., Werndl, C.: Entropy: a guide for the perplexed. In: Beisbart, C., Hartmann, S. (eds.) Probabilities in Physics, pp. 115–142. Oxford University Press, Oxford (1972)

    Google Scholar 

  21. Frigg, R.: Typicality and the approach to equilibrium in Boltzmannian statistical mechanics. Philos. Sci. 76, 997–1008 (2009)

    Google Scholar 

  22. Frigg, R.: Why typicality does not explain the approach to equilibrium. In: Suárez, M. (ed.) Probabilities. Causes and Propensities in Physics. Springer, Berlin (2011)

    Google Scholar 

  23. Giles, R.: Mathematical Foundations of Thermodynamics. Pergamon, Oxford (1964)

    MATH  Google Scholar 

  24. Goldstein, S.: Boltzmanns approach to statistical mechanics. Lect. Notes Phys. 574, 39–54 (2001)

    Google Scholar 

  25. Goldstein, S., Lebowitz, J.: On the Boltzmann entropy of nonequilibrium systems. Physica D 193, 53–66 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Gromov, M.: In a Search for a Structure, Part 1: On Entropy, preprint, http://www.ihes.fr/~gromov/PDF/structre-serch-entropy-july5-2012.pdf

  27. Jaynes, E.: Gibbs vs Boltzmann entropies. Am. J. Phys. 33, 391–398 (1965)

    MATH  Google Scholar 

  28. Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    MathSciNet  MATH  Google Scholar 

  29. Jaynes, E.: Macroscopic prediction. In: Haken, H. (ed.) Complex Systems Operational Approaches in Neurobiology, pp. 254–269. Springer, Berlin (1985)

    Google Scholar 

  30. Jaynes, E.: Probability Theory The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  31. Jaynes, E.: The evolutions of Carnot’s principle. In: Erickson, G., Smith, C. (eds.) Maximum-Entropy and Bayesian Methods in Science and Engineering, pp. 267–282. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  32. Lawvere, W., Schanuel, S.: Conceptual Mathematics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  33. Lebowitz, J.: Boltzmanns entropy and times arrow. Phys. Today 46, 32–38 (1993)

    Google Scholar 

  34. Lebowitz, J.: Macroscopic laws and microscopic dynamics. Ann. N. Y. Acad. Sci. 373, 220–233 (2006)

    Google Scholar 

  35. Lebowitz, J.: Macroscopic laws and microscopic dynamics. Times arrow and Boltzmanns entropy. Physica A 194, 1–97 (1993)

    MathSciNet  Google Scholar 

  36. Lebowitz, J.: Microscopic origins of irreversible macroscopic behavior. Physica A 263, 516–527 (1999)

    MathSciNet  Google Scholar 

  37. Lesne, A.: Shannon entropy: a rigorous mathematical notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math. Struct. Comp. Sci. 24, e240311 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Lieb, E., Yngvason, J.: A guide to entropy and the second law of thermodynamics. Not. Am. Math. Soc. 45, 571–581 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Mac Lane, S.: Categories for the Working Mathematician. Springer-Verlag, Berlin (1971)

    MATH  Google Scholar 

  40. Matoušek, J., Gaertner, B.: Understanding and Using Linear Programming. Springer-Verlag, Berlin (2007)

    Google Scholar 

  41. Niven, R.: Combinatorial entropies and statistics. Eur. Phys. J. B 70, 49–63 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Niven, R.: Exact Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics. Phys. Lett. A 342, 286–293 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Frigg, R.: A field guide to recent work on the foundations of statistical mechanics. In: Rickles, D. (ed.) The Ashgate Companion to Contemporary Philosophy of Physics, pp. 99–196. Ashgate Pub. Limited, Hants (2008)

    Google Scholar 

  44. Penrose, O.: Foundations of Statistical Mechanics. Pergamon, Elmsford (1970)

    MATH  Google Scholar 

  45. Penrose, R.: Cycles of Time. Vintage Books, New York (2012)

    Google Scholar 

  46. Rovelli, C.: Why do we remember the past and not the future? The ’time oriented coarse graining’ hypothesis, preprint, arXiv:1407.3384

  47. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  48. Schrödinger, E.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1946)

    MATH  Google Scholar 

  49. Sevick, E., Prabhakar, R., Williams, S., Searles, D.: Fluctuation theorems. Annu. Rev. Phys. Chem. 59, 603–633 (2008)

    Google Scholar 

  50. Swendsen, R.: Explaining irreversibility. Am. J. Phys. 76, 643–648 (2008)

    Google Scholar 

  51. Steckline, V.: Zermelo, Boltzmann and the recurrence paradox. Am. J. Phys. 51, 894–897 (1983)

    Google Scholar 

  52. Uffink, J.: Bluff your way in the second law of thermodynamics. Stud. Hist. Philos. Mod. Phys. 32B, 305–394 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Yang, X.: Introduction to Mathematical Optimization. Cambridge International Science Publishing, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Díaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, R., Villamarín, S. Combinatorial micro–macro dynamical systems. São Paulo J. Math. Sci. 14, 66–122 (2020). https://doi.org/10.1007/s40863-018-0103-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-018-0103-2

Keywords

Navigation