Skip to main content
Log in

Asymptotic behavior for a nonlocal model of neural fields

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we consider the non local evolution problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u =- u + K(f\circ u ) \ \ in \ \ \Omega ,\\ u = 0 \ \ in \ \ \mathbb {R}^N\backslash \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \) is a smooth bounded domain in \(\mathbb {R}^N\), \(f: \mathbb {R}\rightarrow \mathbb {R}\) and K is an integral operator with a symmetric kernel. We prove existence and some regularity properties of the global attractor. We also characterize the global attractor, using the properties of a Lyapunov functional for this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amari, S.: Dynamics stability of formation of cortical maps. In: Arbib, M.A., Amari, S.I. (eds.) Dynamic Interactions in Neural Networks: Models and Data, pp. 15–34. Springer, New York (1989)

    Chapter  Google Scholar 

  3. Chen, F.: Travelling waves for a neural network. Electron. J. Differ. Equ. 2003(13), 1–14 (2003)

    Google Scholar 

  4. Coombes, S., Schimidt, H., Bojak, I.: Interface dynamics in planar neural field model. J. Math. Neurosci. 2(9), 1–27 (2012)

    MathSciNet  Google Scholar 

  5. Ermentrout, G.B., McLeod, J.B.: Existence and uniqueness of traveliing waves for a neural network. Proc. R. Soc. Edinb. 123A, 461–478 (1993)

    Article  MathSciNet  Google Scholar 

  6. Ermentrout, G.B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998)

    Article  Google Scholar 

  7. Ermentrout, G.B., Jalics, J.Z., Rubin, J.E.: Stimulus-driven travelling solutions in continuum neuronal models with general smoth firing rate functions. SIAM. J. Appl. Math. 70, 3039–3064 (2010)

    MATH  MathSciNet  Google Scholar 

  8. French, D.A.: Identification of a free energy functional in an integro-differential equation model for neuronal network activity. Appl. Math. Lett. 17, 1047–1051 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giese, M.A.: Dynamic Neural Field Theory for Motion Perception. Klumer Academic Publishers, Boston (1999)

    Book  Google Scholar 

  10. Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 07, 303–1979 (1979)

    Article  MathSciNet  Google Scholar 

  11. Kubota, S., Aihara, K.: Analyzing global dynamics of a neural field model. Neural Process. Lett. 21, 133–141 (2005)

    Article  Google Scholar 

  12. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiplos bumps in a neural model of working memory. SIAM J. Appl. Math. 63(1), 62–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rubin, J.E., Troy, W.C.: Sustained spatial patterns of activity in neural populations without recurrent excitation. SIAM J. Appl. Math. 64, 1609–1635 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. da Silva, S.H., Pereira, A.L.: Global attractors for neural fields in a weighted space. Matemática Contemporanea 36, 139–153 (2009)

    MATH  MathSciNet  Google Scholar 

  15. da Silva, S.H.: Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain. Electron. J. Differ. Equ. 2010(138), 1–12 (2010)

    Google Scholar 

  16. da Silva, S.H.: Existence and upper semicontinuity of global attractors for neural network in a bounded domain. Differ. Equ. Dyn. Syst. 19(1–2), 87–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  18. Wu, S., Amari, S., Nakahara, H.: Population coding and decoding in a neural field: a computational study. Neural Comput. 14, 999–1026 (2002)

    Article  MATH  Google Scholar 

  19. Cortaza, C., Elgueta, M., Rossi, J.D.: A non-local diffusion equation whose solutions develop a free boundary. Ann. Henri Poincaré 2(2), 269–281 (2005)

    Article  Google Scholar 

  20. Bezerra, FlankDM, Pereira, A.L., da Silva, S.H.: Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equation with non local terms. J. Math. Anal. Appl. 396, 590–600 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. da Silva, S.H., Bezerra, F.D.M.: Finite fractal dimensionality of attractors for nonlocal evolution equations. Electron. J. Differ. Equ. 2013(221), 1–9 (2013)

    Google Scholar 

  22. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Surveys and Monographs, N. 25, Providence, 1988

  23. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  24. Ladas, G.E., Lakshmikantham, V.: Differential Equations in Abstract Spaces. Academic Press, New York (1972)

    Google Scholar 

  25. Daleckii, J.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Spaces. American Mathematical Society, Providence (1974)

    Google Scholar 

  26. Rall, L.B.: Nonlinear Functional Analysis and Applications. Academic Press, New York, London (1971)

    MATH  Google Scholar 

  27. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer (1981)

  28. Teman, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  Google Scholar 

  29. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  30. da Silva, S.H.: Properties of an equation for neural fields in a bounded domain. Electron. J. Differ. Equ. 2012(42), 1–9 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for his careful reading of the manuscript and his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio L. Pereira.

Additional information

Severino H. da Silva: Research partially supported by CAPES/CNPq.

Antônio L. Pereira: Research partially supported by CNPq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.H., Pereira, A.L. Asymptotic behavior for a nonlocal model of neural fields. São Paulo J. Math. Sci. 9, 181–194 (2015). https://doi.org/10.1007/s40863-015-0018-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-015-0018-0

Keywords

Mathematics Subject Classification

Navigation