Skip to main content

Advertisement

Log in

Literature review and research direction towards channel estimation and hybrid pre-coding in mmWave massive MIMO communication systems

  • Review
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

Owing to the higher frequency, bigger network capacity, and reduced latency, fifth generation mobile communication (5G) has garnered a lot of interest with the rapid advancement of technology. It incorporates a variety of technologies, including “millimeter-wave (mmWave) transmission and massive Multiple-Input Multiple-Output (MIMO)”. The existing digital precoding is too expensive to implement in mmWave communication systems. As a result, hybrid precoding, which mixes digital and analog precoding, is a superior option. It is generally built on one of two types of structures: “fully connected and sub-connected. The fully connected structure” has been intensively explored in the academic community because it can approach the theoretical ideal spectrum efficiency. The high antenna size, on the other hand, complicates the necessity for a low-complexity "channel estimation and hybrid precoding design". Hybrid precoding, in specific, may necessitate “matrix operations on a scale of antenna size”, which is often significant in mmWave transmission. In order to learn more about the latest developments in mmWave large MIMO communication systems, this paper aims to undergo a critical review on channel estimation and hybrid precoding in mmWave massive MIMO communication systems. This review evaluates the different algorithms to be implemented for both “channel estimation and hybrid pre-coding in communication systems”. In addition, the performance measures concentrated in each contribution are observed and categorized. Finally, the conventional strategies will relieve the existing research gaps and challenges with new research directions to be used for the future professionals to maintain the “channel estimation and hybrid pre-coding of mmWave massive MIMO system” at a good level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AoA/AoD:

Angles of arrival or departure

CSI:

Channel state information

ML:

Machine learning

FDD:

Frequency division duplex

DL:

Deep learning

CNN:

Convolutional neural network

DGMP:

Distributed grid matching pursuit

LOS:

Line of sight

OMP:

Orthogonal matching pursuit

FSF:

Frequency selective fading

PAPR:

Peak-to-average power ratio

CP:

Candecomp/Parafac

CRB:

Cramér–Rao bound

FCE:

Fast channel estimation

PEE:

Probability of estimation error

RACE:

Rate-adaptive channel estimation

TS:

Training sequence

MAP:

Maximum a posteriori

MSE:

Mean square error

LDAMP:

Learning denoising-based approximate message passing

DFT:

Discrete Fourier transform

MMSE:

Minimal mean square error

NUPA:

Non-uniform planar arrays

CS:

Compressive sensing

SDP:

Semi-definite programme

SF-CNN:

Spatial-frequency convolutional neural network

FFDNet:

Flexible denoising convolutional neural network

SBEM:

Spatial basis expansion model

OSBS:

Optimized semi-blind sparse

SFT-CNN:

Spatial-frequency-temporal convolutional neural network

PSA:

Pulse shaping algorithm

ISI:

Inter-symbol interference

IFFT:

Inverse fast Fourier transforms

AWGN:

Additive white Gaussian noise

EDE:

Enhanced differential evolution

CC:

Channel capacity

SER:

Symbol error rate

GraSP:

Gradient support pursuit

FFT:

Fast Fourier transform

CBDNet:

Convolutional blind denoising network

ZF:

Zero-forcing

SIC:

Successive interference cancelation

GraHTP:

Gradient hard thresholding Pursuit

AltMin:

Alternate minimization

RF:

Radio frequency

BD:

Block diagonalization

AP:

Analog precoder

ADC:

Analog to digital converter

TMAs:

Time-modulated arrays

SE:

Spectral efficiency

LcHPC:

Low-complexity hybrid precoder and combiner

SdMP:

Stage-determined matching pursuit

MIMO:

Multiple input multiple output

DNN:

Deep neural network

CEO:

Cross-entropy optimization

ASR:

Achievable sum-rate

GS:

Gram–Schmidt

IF:

Interference free

PMA:

Phase modulation arrays

MA-FAHP:

Matching assisted fully adaptive hybrid precoding

AS:

Antenna selection

AO:

Alternating optimization

mmWave:

MillimeterWave

P2P:

Point-to-point

QCQP:

Quadratically constrained quadratic programming

ULS:

Unit-modulus least-squares

SDR-AO:

Semi-definite relaxation-oriented alternating optimization

PCA:

Principle component analysis

FD:

Full-dimensional

ACMF-AO:

Analytical constant modulus factorization based alternating optimization

References

  1. Alkhateeb A, Ayach OE, Leus G, Heath RW Jr (2014) Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process 8(5):831–846

    Article  Google Scholar 

  2. Eliasi PA, Rangan S, Rappaport TS Low-rank spatial channel estimation for millimeter wave cellular systems. arXiv:1410.4831

  3. Marzi Z, Ramasamy D, Madhow U (2016) Compressive channel estimation and tracking for large arrays in mm-Wave picocells. IEEE J Sel Top Signal Process 10(3):514–527

    Article  Google Scholar 

  4. Zhao L, Ng DWK, Yuan J (2017) Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Areas Commun 35(7):1576–1590

    Article  Google Scholar 

  5. Roemer F, Haardt M (2010) Tensor-based channel estimation and iterative refinements for two-way relaying with multiple antennas and spatial reuse. IEEE Trans Signal Process 58(11):5720–5735

    Article  MathSciNet  MATH  Google Scholar 

  6. Yin H, Gesbert D, Filippou M, Liu Y (2013) A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Areas Commun 31(2):264–273

    Article  Google Scholar 

  7. Alkhateeb A, Heath RW Jr (2016) Frequency selective hybrid precoding for limited feedback millimeter wave systems. IEEE Trans Commun 64(5):1801–1818

    Article  Google Scholar 

  8. Liu X, Li X, Cao S, Deng Q, Ran R, Nguyen K, Tingrui P (2019) Hybrid precoding for massive mmWave MIMO systems. IEEE Access 7:33577–33586

    Article  Google Scholar 

  9. Han S, Xu C-LI, Rowell C (2015) Large-scale antenna systems with hybrid precoding analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag 53(1):186–194

    Article  Google Scholar 

  10. Zheng Z, Gharavi H (2019) Spectral and energy ef ciencies of millimeter wave MIMO with con gurable hybrid precoding. IEEE Trans Veh Technol 68(6):5732–5746

    Article  Google Scholar 

  11. Xie T, Dai L, Gao X, Shakir MZ, Li J (2018) Geometric mean decomposition based hybrid precoding for millimeter-wave massive MIMO. China Commun 15(5):229–238

    Article  Google Scholar 

  12. Chen C, Dong Y, Cheng X, Yang L (2018) Low-resolution PSs based hybrid precoding for multiuser communication systems. IEEE Trans Veh Technol 67(7):6037–6047

    Article  Google Scholar 

  13. Alkhateeb A, Leus G, Heath R (2015) Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun 14(11):6481–6494

    Article  Google Scholar 

  14. Chen Y, Chen D, Jiang T (2019) Non-uniform quantization codebookbased hybrid precoding to reduce feedback overhead in millimeter wave MIMO systems. IEEE Trans Commun 67(4):2779–2791

    Article  MathSciNet  Google Scholar 

  15. Rusu C, Mendez-Rial R, Gonzlez-Prelcic N, Heath RW (2016) Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun 15(12):8380–8393

    Article  Google Scholar 

  16. Naeem M, De Pietro G, Coronato A (2022) Application of reinforcement learning and deep learning in multiple-input and multiple-output (MIMO) systems. Sensors 22:309

    Article  Google Scholar 

  17. Gao Z, Hu C, Dai L, Wang Z (2016) Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett 20(6):1259–1262

    Article  Google Scholar 

  18. Guo Z, Yılmaz Y, Wang X (2016) Transmitter-centric channel estimation and low-PAPR precoding for millimeter-wave MIMO systems. IEEE Trans Commun 64(7):2925–2938

    Article  Google Scholar 

  19. Zhou Z, Fang J, Yang L, Li H, Chen Z, Li S (2016) Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun 15(11):7501–7516

    Article  Google Scholar 

  20. Zhou Z, Fang J, Yang L, Li H, Chen Z, Blum RS (2017) Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE J Sel Areas Commun 35(7):1524–1538

    Article  Google Scholar 

  21. Liao A, Gao Z, Wu Y, Wang H, Alouini M (2017) 2D Unitary ESPRIT based super-resolution channel estimation for millimeter-wave massive MIMO with hybrid precoding. IEEE Access 5:24747–24757

    Article  Google Scholar 

  22. Kokshoorn M, Chen H, Wang P, Li Y, Vucetic B (2017) Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process 65(3):601–616

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma X, Yang F, Liu S, Song J, Han Z (2017) Design and optimization on training sequence for mmwave communications: a new approach for sparse channel estimation in massive MIMO. IEEE J Sel Areas Commun 35(7):1486–1497

    Article  Google Scholar 

  24. Xiao Z, Xia P, Xia X (2017) Channel estimation and hybrid precoding for millimeter-wave MIMO systems: a low-complexity overall solution. IEEE Access 5:16100–16110

    Article  Google Scholar 

  25. Lee T, Ko Y (2017) Channel estimation and data detection in the presence of phase noise in MIMO-OFDM systems with independent oscillators. IEEE Access 5:9647–9662

    Article  Google Scholar 

  26. Qin Q, Gui L, Cheng P, Gong B (2018) Time-varying channel estimation for millimeter wave multiuser MIMO systems. IEEE Trans Veh Technol 67(10):9435–9448

    Article  Google Scholar 

  27. Hu C, Dai L, Mir T, Gao Z, Fang J (2018) Super-resolution channel estimation for mmWave massive MIMO with hybrid precoding. IEEE Trans Veh Technol 67(9):8954–8958

    Article  Google Scholar 

  28. Vlachos E, Alexandropoulos GC, Thompson J (2018) Massive MIMO channel estimation for millimeter wave systems via matrix completion. IEEE Signal Process Lett 25(11):1675–1679

    Article  Google Scholar 

  29. González-Coma JP, Rodríguez-Fernández J, González-Prelcic N, Castedo L, Heath RW (2018) Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems. IEEE J Sel Top Signal Process 12(2):353–367

    Article  Google Scholar 

  30. He H, Wen C, Jin S, Li GY (2018) Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wirel Commun Lett 7(5):852–855

    Article  Google Scholar 

  31. Khan I (2018) Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU-Int J Electron C 89:181–190

    Article  Google Scholar 

  32. Tsai Y, Zheng L, Wang X (2018) Millimeter-wave beamformed full-dimensional MIMO channel estimation based on atomic norm minimization. IEEE Trans Commun 66(12):6150–6163

    Article  Google Scholar 

  33. Kokshoorn M, Chen H, Li Y, Vucetic B (2018) Beam-on-graph: simultaneous channel estimation for mmWave MIMO systems with multiple users. IEEE Trans Commun 66(7):2931–2946

    Article  Google Scholar 

  34. Wang B, Jian M, Gao F, Li GY, Lin H (2019) Beam squint and channel estimation for wideband mmWave massive MIMO-OFDM systems. IEEE Trans Signal Process 67(23):5893–5908

    Article  MathSciNet  MATH  Google Scholar 

  35. Dong P, Zhang H, Li GY, Gaspar IS, NaderiAlizadeh N (2019) Deep CNN-based channel estimation for mmWave massive MIMO systems. IEEE J Sel Top Signal Process 13(5):989–1000

    Article  Google Scholar 

  36. Srivastava S, Mishra A, Rajoriya A, Jagannatham AK, Ascheid G (2019) Quasi-static and time-selective channel estimation for block-sparse millimeter wave Hybrid MIMO systems: sparse bayesian learning (SBL) based approaches. IEEE Trans Signal Process 67(5):1251–1266

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang Z, Liang Y, Shi W, Yuan L, Gui G (2019) ℓ1/2 -Regularization-based super-resolution sparse channel estimation for MmWave massive MIMO systems. IEEE Access 7:75837–75844

    Article  Google Scholar 

  38. Vlachos E, Alexandropoulos GC, Thompson J (2019) Wideband MIMO channel estimation for hybrid beamforming millimeter wave systems via random spatial sampling. IEEE J Sel Top Signal Process 13(5):1136–1150

    Article  Google Scholar 

  39. Mehrabi M, Mohammadkarimi M, Ardakani M, Jing Y (2019) Decision directed channel estimation based on deep neural network $k$ -step predictor for mimo communications in 5G. IEEE J Sel Areas Commun 37(11):2443–2456

    Article  Google Scholar 

  40. Shao W, Zhang S, Zhang X, Ma J, Zhao N, Leung VCM (2019) Massive MIMO channel estimation over the mmwave systems through parameters learning. IEEE Commun Lett 23(4):672–675

    Article  Google Scholar 

  41. Jin Y, Zhang J, Jin S, Ai B (2019) Channel estimation for cell-free mmWave Massive MIMO through deep learning. IEEE Trans Veh Technol 68(10):10325–10329

    Article  Google Scholar 

  42. Tang H, Wang J, He L (2019) Off-grid sparse Bayesian learning-based channel estimation for MmWave massive MIMO uplink. IEEE Wirel Commun Lett 8(1):45–48

    Article  Google Scholar 

  43. Wang Y, Xu W, Zhang H, You X (2019) Wideband mmWave channel estimation for hybrid massive MIMO with low-precision ADCs. IEEE Wirel Commun Lett 8(1):285–288

    Article  Google Scholar 

  44. Uwaechia AN, Mahyuddin NM, Ain MF, Latiff NMA, Za’bah NF (2019) Compressed channel estimation for massive MIMO-OFDM systems over doubly selective channels. Phys Commun 36:1007

    Article  Google Scholar 

  45. Jeya R, Amutha B (2019) Optimized semiblind sparse channel estimation algorithm for MU-MIMO OFDM system. Comput Commun 146:103–109

    Article  Google Scholar 

  46. Kim I-s, Choi J (2019) Channel estimation via gradient pursuit for mmWave massive MIMO systems with one-bit ADCs. EURASIP J Wirel Commun Netw

  47. Ye X, Zheng G, Zhang A, You Li, Gao X (2019) DFT-based low-complexity channel estimation method for millimeter-wave MIMO systems. Wirel Pers Commun 107:205–216

    Article  Google Scholar 

  48. Yi Z, Zou W (2020) A Novel NE-DFT Channel estimation scheme for millimeter-wave massive MIMO vehicular communications. IEEE Access 8:74965–74976

    Article  Google Scholar 

  49. Singh P, Srivastava S, Jagannatham AK, Hanzo L (2020) Second-order statistics-based semi-blind techniques for channel estimation in millimeter-wave MIMO analog and hybrid beamforming. IEEE Trans Commun 68(11):6886–6901

    Article  Google Scholar 

  50. Jin Y, Zhang J, Ai B, Zhang X (2020) Channel estimation for mmWave massive MIMO with convolutional blind denoising network. IEEE Commun Lett 24(1):95–98

    Article  Google Scholar 

  51. Ma W, Qi C, Zhang Z, Cheng J (2020) Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans Commun 68(5):2838–2849

    Article  Google Scholar 

  52. Liang L, Xu W, Dong X (2014) Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wirel Commun Lett 3(6):653–656

    Article  Google Scholar 

  53. Gao X, Dai L, Han SCI, Heath RW (2016) Energy-efficient hybrid analog and digital precoding for MmWave MIMO systems with large antenna arrays. IEEE JSel Areas Commun 34(4):998–1009

    Article  Google Scholar 

  54. Yu X, Shen J, Zhang J, Letaief KB (2016) Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process 10(3):485–500

    Article  Google Scholar 

  55. Ahn Y, Kim T, Lee C (2017) A beam steering based hybrid precoding for MU-MIMO mmWave systems. IEEE Commun Lett 21(12):2726–2729

    Article  Google Scholar 

  56. Li N, Wei Z, Yang H, Zhang X, Yang D (2017) Hybrid precoding for mmWave massive MIMO systems with partially connected structure. IEEE Access 5:15142–15151

    Article  Google Scholar 

  57. Seleem H, Sulyman AI, Alsanie A (2017) Hybrid precoding-beamforming design with Hadamard RF Codebook for mmWave large-scale MIMO Systems. IEEE Access 5:6813–6823

    Article  Google Scholar 

  58. Zhao J, Gao F, Jia W, Zhang S, Jin S, Lin H (2017) Angle domain hybrid precoding and channel tracking for millimeter wave massive MIMO systems. IEEE Trans Wirel Commun 16(10):6868–6880

    Article  Google Scholar 

  59. Chen H-J, Lin L-F, Chung W-H, Lee T-S (2017) Energy efficient multi-user millimeter wave MIMO systems using tree search hybrid precoding and few-bit ADCs. J Signal Process Syst 90:1387–1399

    Article  Google Scholar 

  60. Cui M, Zou W, Wang Y, Zhang R (2018) Low complexity joint hybrid precoding algorithm for millimeter wave MIMO systems. IEEE Access 6:56423–56432

    Article  Google Scholar 

  61. Liu X, Zou W, Chen S (2018) Joint design of analog and digital codebooks for hybrid precoding in millimeter wave massive MIMO systems. IEEE Access 6:69818–69825

    Article  Google Scholar 

  62. González-Coma JP, Maneiro-Catoira R, Castedo L (2018) Hybrid precoding with time-modulated arrays for Mmwave MIMO systems. IEEE Access 6:59422–59437

    Article  Google Scholar 

  63. Liu X, Zou W (2018) Block-sparse hybrid precoding and limited feedback for millimeter wave massive MIMO systems. Phys Commun 26:81–86

    Article  Google Scholar 

  64. Ding Q, Deng Y, Gao X (2019) Spectral and energy efficiency of hybrid precoding for mmWave massive MIMO with low-resolution ADCs/DACs. IEEE Access 7:186529–186537

    Article  Google Scholar 

  65. Uwaechia AN, Mahyuddin NM, Ain MF, Abdul Latiff NM, Za;bah NF (2019) "On the spectral-efficiency of low-complexity and resolution hybrid precoding and combining transceivers for mmWave MIMO Systems. IEEE Access 7:109259–109277

    Article  Google Scholar 

  66. Liu Y, Feng Q, Wu Q, Zhang Y, Jin M, Qiu T (2019) Energy-efficient hybrid precoding with low complexity for mmWave massive MIMO systems. IEEE Access 7:95021–95032

    Article  Google Scholar 

  67. Huang H, Song Y, Yang J, Gui G, Adachi F (2019) Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans Veh Technol 68(3):3027–3032

    Article  Google Scholar 

  68. Mir T, Zain Siddiqi M, Mir U, Mackenzie R, Hao M (2019) "Machine learning inspired hybrid precoding for wideband millimeter-wave massive MIMO systems. IEEE Access 7:62852–62864

    Article  Google Scholar 

  69. Dai L, Wang B, Peng M, Chen S (2019) Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power Transfer. IEEE J Sel Areas Commun 37(1):131–141

    Article  Google Scholar 

  70. Jin J, Xiao C, Chen W, Wu Y (2019) Channel-statistics-based hybrid precoding for millimeter-wave MIMO systems with dynamic subarrays. IEEE Trans Commun 67(6):3991–4003

    Article  Google Scholar 

  71. Hu C, Zhang J (2019) Hybrid precoding design for adaptive subconnected structures in millimeter-wave MIMO systems. IEEE Syst J 13(1):137–146

    Article  Google Scholar 

  72. Sun X, Qi C (2019) Codeword selection and hybrid precoding for multiuser millimeter-wave massive MIMO systems. IEEE Commun Lett 23(2):386–389

    Article  Google Scholar 

  73. Jiang J, Yuan Y, Zhen L (2019) Multi-user hybrid precoding for dynamic subarrays in mmWave massive MIMO systems. IEEE Access 7:101718–101728

    Article  Google Scholar 

  74. Zheng Z, Gharavi H (2019) Spectral and energy efficiencies of millimeter wave MIMO with configurable hybrid precoding. IEEE Trans Veh Technol 68(6):5732–5746

    Article  Google Scholar 

  75. Souto N, Silva J, Pavia J, Ribeiro M (2019) An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems. Phys Commun 34:165–173

    Article  Google Scholar 

  76. Li J, Yue D-W (2019) Trellis exploration based hybrid precoding and distributed antenna array structures in millimeter-wave MIMO systems. Wirel Pers Commun 111:293–312

    Article  Google Scholar 

  77. Hei Y, Yu S, Liu C, Li W, Yang J (2020) Energy-efficient hybrid precoding for mmWave MIMO systems with phase modulation array. IEEE Trans Green Commun Netw 4(3):678–688

    Article  Google Scholar 

  78. Xue X, Wang Y, Yang L, Shi J, Li Z (2020) Energy-efficient hybrid precoding for massive MIMO mmWave systems with a fully-adaptive-connected structure. IEEE Trans Commun 68(6):3521–3535

    Article  Google Scholar 

  79. Bao X, Feng W, Zheng J, Li J (2020) Deep CNN and equivalent channel based hybrid precoding for mmWave massive MIMO systems. IEEE Access 8:19327–19335

    Article  Google Scholar 

  80. Manne R, Kantheti S, Kantheti S (2020) Classification of skin cancer using deep learning, convolutional neural networks -opportunities and vulnerabilities. Int J Mod Trends Sci Technol 6(11):101–108

    Article  Google Scholar 

  81. Elbir AM, Papazafeiropoulos AK (2020) Hybrid precoding for multiuser millimeter wave massive MIMO systems: a deep learning approach. IEEE Trans Veh Technol 69(1):552–563

    Article  Google Scholar 

  82. Uwaechia AN, Mahyuddin NM (2020) Spectrum and energy efficiency optimization for hybrid precoding-based SWIPT-enabled mmWave mMIMO-NOMA systems. IEEE Access 8:139994–140007

    Article  Google Scholar 

  83. Bahingayi EE, Lee K (2020) Low-complexity incremental search-aided hybrid precoding and combining for massive MIMO systems. IEEE Access 8:66867–66877

    Article  Google Scholar 

  84. Qiao X, Zhang Y, Zhou M, Yang L (2020) Alternating optimization based hybrid precoding strategies for millimeter wave MIMO systems. IEEE Access 8:113078–113089

    Article  Google Scholar 

  85. Sun Y et al (2020) Principal component analysis-based broadband hybrid precoding for millimeter-wave massive MIMO systems. IEEE Trans Wirel Commun 19(10):6331–6346

    Article  Google Scholar 

  86. Hong Z, Li T, Li F (2020) Deep double-pilot-based hybrid precoding in UAV-enabled mmWave massive MIMO. EURASIP J Wirel Commun Netw

  87. Unnisa N, Tatineni M (2021) Adaptive deep learning strategy with red deer algorithm for sparse channel estimation and hybrid precoding in millimeter wave massive MIMO-OFDM systems. Wirel Pers Commun 109:3019–3051

    Google Scholar 

  88. Sheikh JA, Mustafa F, Sidiq S et al (2021) A new optimization technique in massive MIMO and LSAS using hybrid architecture and channel estimation algorithm for 5G networks. Wirel Pers Commun 120:771–785

    Article  Google Scholar 

  89. Guo C, Yu Q-Y, Sun W-B, Meng W-X (2021) Robust efficient hybrid pre-coding scheme for mmWave cell-free and user-centric massive MIMO communications. IEEE Trans Wirel Commun 20(12):8006–8022

    Article  Google Scholar 

  90. Kallur MG (2021) "Hybrid PSO-GSA algorithm for channel estimation in massive MIMO system. J Netw Commun Syst 4(3):1–8

    Google Scholar 

  91. Murthy MYB, Koteswararao A, Babu MS (2021) Adaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor diagnosis. Biomed Eng Lett 12:37–58

    Article  Google Scholar 

  92. Singh A, Joshi S (2021) A survey on hybrid beamforming in MmWave massive MIMO system. J Sci Res Inst Sci 65(1):201–213

    Google Scholar 

  93. Lu Z, Zhang Y, Zhang J (2019) Quantized hybrid precoding design for millimeter-wave large-scale MIMO systems. China Commun 16(4):130–138

    Google Scholar 

  94. Castellanos MR, Raghavan V, Ryu JH, Koymen OH, Li J, Love DJ, Peleato B (2018) Channel-reconstruction-based hybrid precoding for millimeter-wave multi-user MIMO systems. IEEE J Sel Topics Signal Process 12(2):383–398

    Article  Google Scholar 

  95. Gao Z, Dai L, Wang Z, Chen S (2015) Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans Signal Process 63(23):6169–6183

    Article  MathSciNet  MATH  Google Scholar 

  96. Gao Z, Hu C, Dai L, Wang Z (2016) Channel estimation for millimeterwave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett 20(6):1259–1262

    Article  Google Scholar 

  97. Hou Q, Wang R, Liu E, Yan D (2018) Hybrid precoding design for MIMO system with one-bit ADC receivers. IEEE Access 6:48478–48488

    Article  Google Scholar 

  98. Mirza J, Ali B, Naqvi SS, Saleem S (2017) Hybrid precoding via successive refinement for millimeter wave MIMO communication systems. IEEE Commun Lett 21(99):1–1

    Google Scholar 

  99. Zhu X, Wang Z, Dai L, Wang Q (2016) Adaptive hybrid precoding for multiuser massive MIMO. IEEE Commun Lett 20(4):776–779

    Article  Google Scholar 

  100. Khalid F, Speidel J (2014) Robust hybrid precoding for multiuser MIMO wireless communication systems. IEEE Trans Wirel Commun 13(6):3353–3363

    Article  Google Scholar 

  101. Chen CH, Tsai CR, Liu YH, Hung WL, Wu AY (2017) Compressive sensing (cs) assisted low-complexity beamspace hybrid precoding for millimeter-wave mimo systems. IEEE Trans Signal Process 65(6):1412–1424

    Article  MathSciNet  MATH  Google Scholar 

  102. Seleem H, Sulyman AI, Alsanie A (2017) Hybrid precodingbeamforming design with Hadamard RF codebook for mmWave largescale MIMO systems. IEEE Access 5:6813–6823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Ravikumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.N., Ravikumar, C.V. & Rajesh, A. Literature review and research direction towards channel estimation and hybrid pre-coding in mmWave massive MIMO communication systems. J Reliable Intell Environ 9, 241–260 (2023). https://doi.org/10.1007/s40860-022-00174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-022-00174-5

Keywords

Navigation