Skip to main content
Log in

Deconvolved Beamforming for a Compact Conformal Array on a Three-dimensional Mobile Platform

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

A robust and high-resolution deconvolution algorithm based on coordinate correction is developed for a compact conformal array on a three-dimensional (3D) moving platform such as underwater glider. First, the coordinate-correcting conventional beamforming is derived to directly estimate the azimuth of the long-range targets in the geodesic coordinate system for a 3D moving platform array. Then, we improve the extended Richardson–Lucy deconvolution (Ex-RL-dCv) beamforming algorithm utilizing coordinate correction to simplify the bearing estimation model from two-dimensional (2D) to one-dimensional (1D). The improved algorithm corrects the deconvolution point spread function (PSF) dictionary mismatch caused by the platform’s 3D motion, and has lower sidelobes compared with the Ex-RL-dCv algorithm without coordinate correction. Finally, simulations and results from field-trial data processing are presented. The results demonstrate that the improved Ex-RL-dCv beamforming based on coordinate correction can significantly suppress the high sidelobes caused by deconvolution model mismatch, and successfully realize the robust and high-resolution detection for targets using the compact conformal array on a 3D mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sun, D., Ma, C., Yang, T.C., Mei, J., Shi, W.: Improving the performance of a vector sensor line array by deconvolution. IEEE J. Oceanic Eng. 45(3), 1063–1077 (2019). https://doi.org/10.1109/JOE.2019.2912586

    Article  Google Scholar 

  2. Zhao, B., Zhang, W., Ding, H.: A new algorithm for image deblurring based on Richardson-Lucy. Comput. Eng. Appl. 47(34), 1-4P (2011). https://doi.org/10.3778/j.issn.1002−331.2011.34.001

    Article  Google Scholar 

  3. Chu, Z., Yang, Y., He, Y.: Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming. J. Sound Vib. 344, 484–502 (2015). https://doi.org/10.1016/j.jsv.2015.01.047

    Article  Google Scholar 

  4. Yardibi, T., Li, J., Stoica, P., Cattafesta, L.N., III.: Sparsity constrained deconvolution approaches for acoustic source mapping. J. Acoust. Soc. America 123(5), 2631–2642 (2008). https://doi.org/10.1121/1.2896754

    Article  Google Scholar 

  5. Dougherty, R. (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. In: 11th AIAA/CEAS aeroacoustics conference, https://doi.org/10.2514/6.2005−961

  6. Lylloff, O., Fernández-Grande, E., Agerkvist, F., Hald, J., Tiana Roig, E., Andersen, M.S.: Improving the efficiency of deconvolution algorithms for sound source localization. J. Acoust. Soc. America 138(1), 172–180 (2015). https://doi.org/10.1121/1.4922516

    Article  Google Scholar 

  7. Ehrenfried, K., Koop, L.: Comparison of iterative deconvolution algorithms for the mapping of acoustic sources. AIAA J. 45(7), 1584–1595 (2007). https://doi.org/10.2514/1.26320

    Article  Google Scholar 

  8. Shao, P., Xing, M., Xia, X.G., Li, Y., Li, X., Bao, Z.: Autofocus algorithm using blind homomorphic deconvolution for synthetic aperture radar imaging. IET Radar Sonar Navig. 9(7), 900–906 (2015). https://doi.org/10.1049/iet-rsn.2014.0399

    Article  Google Scholar 

  9. Bose, R., Freedman, A., Steinberg, B.D.: Sequence CLEAN: a modified deconvolution technique for microwave images of contiguous targets. IEEE Trans. Aerosp. Electron. Syst. 38(1), 89–97 (2002). https://doi.org/10.1109/7.993231

    Article  Google Scholar 

  10. Williams, E.G., Maynard, J.D., Skudrzyk, E.: Sound source reconstructions using a microphone array. J. Acoust. Soc. America 68(1), 340–344 (1980). https://doi.org/10.1121/1.384602

    Article  Google Scholar 

  11. Tiana-Roig, E., Jacobsen, F.: Deconvolution for the localization of sound sources using a circular microphone array. J. Acoust. Soc. America 134(3), 2078–2089 (2013). https://doi.org/10.1121/1.4816545

    Article  Google Scholar 

  12. Xenaki, A., Jacobsen, F., Fernandez-Grande, E.: Improving the resolution of three-dimensional acoustic imaging with planar phased arrays. J. Sound Vib. 331(8), 1939–1950 (2012). https://doi.org/10.1016/j.jsv.2011.12.011

    Article  Google Scholar 

  13. Yang, T.C.: Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng. 43(1), 160–172 (2017). https://doi.org/10.1109/JOE.2017.2680818

    Article  Google Scholar 

  14. Yang, T.C.: Performance analysis of superdirectivity of circular arrays and implications for sonar systems. IEEE J. Oceanic Eng. 44(1), 156–166 (2018). https://doi.org/10.1109/JOE.2018.2801144

    Article  Google Scholar 

  15. Sun D, Ma C, Mei J, Shi W, Gao L (2018) The deconvolved conventional beamforming for non-uniform line arrays. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), IEEE, https://doi.org/10.1109/OCEANSKOBE.2018.8559294

  16. Mei, J., Shi, W., Ma, C., Sun, D.: Near-field focused beamforming acoustic image measurement based on deconvolution. Acta Acustica 45(1), 15–8 (2020). https://doi.org/10.15949/j.cnki.0371−025.2020.01.002

    Article  Google Scholar 

  17. Niu, S.L., Zhang, Z.Y., Hu, Y.M., Ni, M.: Direction of arrival estimation from a single vector hydrophone with attitude correction. J Nat. Univ. Defense Technol. 33(6), 105–110 (2011). https://doi.org/10.3969/j.issn.1001−486.2011.06.018

    Article  Google Scholar 

  18. Richardson, W.H.: Bayesian-based iterative method of image restoration. JoSA 62(1), 55–59 (1972). https://doi.org/10.1364/JOSA.62.000055

    Article  Google Scholar 

  19. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974)

    Article  Google Scholar 

  20. Woithe H C, Boehm D, Kremer U. (2011) Improving Slocum Glider dead reckoning using a Doppler Velocity Log. OCEANS'11 MTS/IEEE KONA, https://doi.org/10.23919/OCEANS.2011.6107296

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant No.61871144.

Funding

The Funding was provided by Innovative Research Group Project of the National Natural Science Foundation of China, (No.61871144)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidan Mei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Zhang, K., Mei, J. et al. Deconvolved Beamforming for a Compact Conformal Array on a Three-dimensional Mobile Platform. Acoust Aust 51, 373–388 (2023). https://doi.org/10.1007/s40857-023-00304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-023-00304-w

Keywords

Navigation