Skip to main content
Log in

Effects of Different Lung Volume Conditions on Closed Quotient, Vocal Fundamental Frequency and Relative Intensity in Vocally Untrained Female Speakers

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the relationship between lung volume (LV) conditions and vocal fold vibratory patterns using measurements of closed quotient (CQ), fundamental frequency (F0) and relative vocal intensity. Forty-three healthy and vocally untrained females were asked to produce the vowel /a/ following breathing instructions that cued for higher, habitual, or lower LV conditions. Closed quotient was measured by electroglottography (EGG) and analyzed using criterion-level method of 25%. An average of CQ, F0 and relative vocal intensity were obtained. No significant difference was observed in CQ between cued LV conditions; however, there was a trend for CQ to increase in the cued high LV condition. Relative vocal intensity and F0 differed significantly across all conditions with higher F0 and relative vocal intensity observed at the high LV condition. These findings suggested that the use of different cued LVs did not have a significant impact on CQ. This may have been due to (1) the phonatory task, (2) variability in responses to the breathing instructions between individuals, and (3) the measurement of CQ. However, F0 and relative vocal intensity were significantly influenced by the LV. This offers a possible alternative approach in cueing pitch and loudness in singing and voice therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Titze, I.R.: The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83(4), 1536–1552 (1988)

    Article  Google Scholar 

  2. Wanger, J., Clausen, J.L., Coates, A., Pedersen, O.F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C.P., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D., Macintyre, N., McKay, R., Miller, M.R., Navajas, D., Pellegrino, R., Viegi, G.: Standardisation of the measurement of lung volumes. Eur. Respir. J. 26(3), 511–522 (2005). https://doi.org/10.1183/09031936.05.00035005

    Article  Google Scholar 

  3. Iwarsson, J., Thomasson, M., Sundberg, J.: Effects of lung volume on the glottal voice source. J. Voice 12(4), 424–433 (1998)

    Article  Google Scholar 

  4. Watson, P.J., Ciccia, A.H., Weismer, G.: The relation of lung volume initiation to selected acoustic properties of speech. J. Acoust. Soc. Am. 113(5), 2812–2819 (2003)

    Article  Google Scholar 

  5. Iwarsson, J., Sundberg, J.: Effects of lung volume on vertical larynx position during phonation. J. Voice 12(2), 159–165 (1998)

    Article  Google Scholar 

  6. Dromey, C., Ramig, L.O.: The effect of lung volume on selected phonatory and articulatory variables. J. Speech Lang. Hear. Res. 41(3), 491–502 (1998)

    Article  Google Scholar 

  7. Collyer, S., Kenny, D.T., Archer, M.: The effect of abdominal kinematic directives on respiratory behaviour in female classical singing. Logop. Phon. Vocol. 34(3), 100–110 (2009). https://doi.org/10.1080/14015430903008780

    Article  Google Scholar 

  8. Leanderson, R., Sundberg, J.: Breathing for singing. J. Voice 2(1), 2–12 (1988). https://doi.org/10.1016/S0892-1997(88)80051-1

    Article  Google Scholar 

  9. Kiesgen, P.: Voice pedagogy: breathing. J. Sing. 62(2), 169–171 (2005)

    Google Scholar 

  10. Carding, P.N., Horsley, I.A.: An evaluation study of voice therapy in non-organic dysphonia. Eur. J. Disord. Commun. J. Coll. Speech Lang. Ther. Lond. 27(2), 137–158 (1992)

    Article  Google Scholar 

  11. Ruddy, B.H., Davenport, P., Baylor, J., Lehman, J., Baker, S., Sapienza, C.: Inspiratory muscle strength training with behavioral therapy in a case of a rower with presumed exercise-induced paradoxical vocal-fold dysfunction. Int. J. Pediatr. Otorhinolaryngol. 68(10), 1327–1332 (2004). https://doi.org/10.1016/j.ijporl.2004.04.002

    Article  Google Scholar 

  12. Solomon, N.P., Makashay, M.J., Kessler, L.S., Sullivan, K.W.: Speech-Breathing treatment and LSVT for a patient with hypokinetic-spastic dysarthria After TBI. J. Med. Speech-Lang. Pathol. 12(4), 213–219 (2004)

    Google Scholar 

  13. Xu, J.H., Ikeda, Y., Komiyama, S.: Bio-feedback and the yawning breath pattern in voice therapy: a clinical trial. Auris Nasus Larynx 18(1), 67–77 (1991)

    Article  Google Scholar 

  14. Sapienza, C.M.: Respiratory muscle strength training applications. Curr. Opin. Otolaryngol. Head Neck Surg. 16(3), 216–220 (2008). https://doi.org/10.1097/MOO.0b013e3282fe96bd

    Article  Google Scholar 

  15. Titze, I.R.: A framework for the study of vocal registers. J. Voice 2(3), 183–194 (1988). https://doi.org/10.1016/S0892-1997(88)80075-4

    Article  Google Scholar 

  16. Steinhauer, K., Grayhack, J.P., Smiley-Oyen, A.L., Shaiman, S., McNeil, M.R.: The relationship among voice onset, voice quality, and fundamental frequency: a dynamical perspective. J. Voice 18(4), 432–442 (2004). https://doi.org/10.1016/j.jvoice.2004.01.006

    Article  Google Scholar 

  17. Chernobelsky, S.: The use of electroglottography in the treatment of deaf adolescents with puberphonia. Logoped. Phon. Vocol. 27(2), 63–65 (2002). https://doi.org/10.1080/140154302760409275

    Article  Google Scholar 

  18. Lim, J.Y., Lim, S.E., Choi, S.H., Kim, J.H., Kim, K.M., Choi, H.S.: Clinical characteristics and voice analysis of patients with mutational dysphonia: clinical significance of diplophonia and closed quotients. J. Voice 21(1), 12–19 (2007). https://doi.org/10.1016/j.jvoice.2005.10.002

    Article  Google Scholar 

  19. Björkner, E., Sundberg, J., Cleveland, T., Stone, E., Skolan för datavetenskap och, k., Tal, m.o.h.T.M.H., Kth: Voice source differences between registers in female musical theater singers. J. Voice 20(2), 187–197 (2006). https://doi.org/10.1016/j.jvoice.2005.01.008

    Article  Google Scholar 

  20. Roubeau, B., Chevrie-Muller, C., Arabia-Guidet, C.: Electroglottographic study of the changes of voice registers. Folia Phon. 39(6), 280–289 (1987)

    Article  Google Scholar 

  21. Blomgren, M., Chen, Y., Ng, M.L., Gilbert, H.R.: Acoustic, aerodynamic, physiologic, and perceptual properties of modal and vocal fry registers. J. Acoust. Soc. Am. 103(5 Pt 1), 2649–2658 (1998)

    Article  Google Scholar 

  22. La, F.M., Sundberg, J.: Contact quotient versus closed quotient: a comparative study on professional male singers. J. Voice 29(2), 148–154 (2015). https://doi.org/10.1016/j.jvoice.2014.07.005

    Article  Google Scholar 

  23. Herbst, C., Ternström, S.: A comparison of different methods to measure the EGG contact quotient. Logop. Phoniatr. Vocol. 31(3), 126–138 (2006). https://doi.org/10.1080/14015430500376580

    Article  Google Scholar 

  24. Kania, R.E., Hans, S., Hartl, D.M., Clement, P.: Variability of electroglottographic glottal closed quotients. Arch. Otolaryngol. Head Neck Surg. 130(3), 349 (2004)

    Article  Google Scholar 

  25. Verdolini, K., Druker, D.G., Palmer, P.M., Samawi, H.: Laryngeal adduction in resonant voice. J. Voice 12(3), 315–327 (1998). https://doi.org/10.1016/S0892-1997(98)80021-0

    Article  Google Scholar 

  26. Kankare, E., Laukkanen, A.-M., Ilomäki, I., Miettinen, A., Pylkkänen, T.: Electroglottographic contact quotient in different phonation types using different amplitude threshold levels. Logop. Phon. Vocol. 37(3), 127–132 (2012). https://doi.org/10.3109/14015439.2012.664656

    Article  Google Scholar 

  27. Henrich, N., Alessandro, C., Doval, B., Castellengo, M.: On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J. Acoust. Soc. Am. 115(3), 1321–1332 (2004). https://doi.org/10.1121/1.1646401

    Article  Google Scholar 

  28. Paul, N., Kumar, S., Chatterjee, I., Mukherjee, B.: Electroglottographic parameterization of the effects of gender, vowel and phonatory registers on vocal fold vibratory patterns: an Indian perspective. Indian J. Otolaryngol. Head Neck Surg. 63(1), 27–31 (2011). https://doi.org/10.1007/s12070-010-0099-0

    Article  Google Scholar 

  29. Henrich, N., d’Alessandro, C., Doval, B., Castellengo, M.: Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency. J. Acoust. Soc. Am. 117(3), 1417–1430 (2005). https://doi.org/10.1121/1.1850031

    Article  Google Scholar 

  30. Stathopoulos, E.T., Sapienza, C.: Respiratory and laryngeal function of women and men during vocal intensity variation. J. Speech Hear. Res. 36(1), 64–75 (1993)

    Article  Google Scholar 

  31. Kitzing, P., Sonesson, B.: A photoglottographical study of the female vocal folds during phonation. Folia Phoniatrica 26(2), 138–149 (1974)

    Article  Google Scholar 

  32. Sundberg, J.E., Leanderson, R., von Euler, C.: Activity relationship between diaphragm and cricothyroid muscles. J. Voice 3(3), 225–232 (1989). https://doi.org/10.1016/S0892-1997(89)80004-9

    Article  Google Scholar 

  33. Deary, I.J., Wilson, J.A., Carding, P.N., MacKenzie, K.: VoiSS: a patient-derived voice symptom scale. J. Psychosom. Res. 54(5), 483–489 (2003). https://doi.org/10.1016/S0022-3999(02)00469-5

    Article  Google Scholar 

  34. Fairbanks, G.: Voice and Articulation Drillbook, 2nd edn. Harper & Row, New York (1960)

    Google Scholar 

  35. Hirano, M.: Clinical Examination of Voice. Book, Whole, vol. 5. Springer-Verlag, Wien (1981)

    Google Scholar 

  36. AKG Acoustics. https://www.akg.com/Microphones/Headset%20Microphones/C520.html. Accessed June 2018

  37. Ambulatory Monitoring Inc. http://www.ambulatory-monitoring.com/inductotrace.html (2018). Accessed June 2018

  38. Glottal Enterprises: Electroglottographs. http://www.glottal.com/Electroglottographs.html (2018). Accessed June 2018

  39. ADInstruments: PowerLab. https://www.adinstruments.com/products/powerlab (2018). Accessed June 2018

  40. ADInstruments: LabChart. https://www.adinstruments.com/products/labchart. Accessed June 2018

  41. Iwarsson, J., Thomasson, M., Sundberg, J.: Lung volume and phonation: a methodological study. Logoped. Phon. Vocol. 21(1), 13–20 (1996). https://doi.org/10.3109/14015439609099198

    Article  Google Scholar 

  42. Glottal Enterprises: PhaseComp Software. http://www.glottal.com/PhaseComp.html (2018). Accessed June 2018

  43. Boersma, P., Weenink, D.: Praat: doing phonetics by computer. http://www.fon.hum.uva.nl/praat/. January, 2018

  44. Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–428 (1979)

    Article  Google Scholar 

  45. Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016). https://doi.org/10.1016/j.jcm.2016.02.012

    Article  Google Scholar 

  46. Chasaide, A.N., Gobl, C.: Contextual variation of the vowel voice source as a function of adjacent consonants. Lang. Speech 36(Pt 2–3), 303–330 (1993). https://doi.org/10.1177/002383099303600310

    Article  Google Scholar 

  47. Löfqvist, A., Baer, T., McGarr, N.S., Story, R.S.: The cricothyroid muscle in voicing control. J. Acoust. Soc. Am. 85(3), 1314–1321 (1989)

    Article  Google Scholar 

  48. Hoole, P., Bombien, L.: Laryngeal–oral coordination in mixed-voicing clusters. J. Phon. 44, 8–24 (2014). https://doi.org/10.1016/j.wocn.2014.02.004

    Article  Google Scholar 

  49. Hanson, H.M., Stevens, K.N.: A quasiarticulatory approach to controlling acoustic source parameters in a Klatt-type formant synthesizer using HLsyn. J. Acoust. Soc. Am. 112(3 Pt 1), 1158–1182 (2002). https://doi.org/10.1121/1.1498851

    Article  Google Scholar 

  50. Löfqvist, A.: Acoustic and aerodynamic effects of interarticulator timing in voiceless consonants. Lang. Speech 35(1–2), 15 (1992)

    Article  Google Scholar 

  51. Cho, T., Ladefoged, P.: Variation and universals in VOT: evidence from 18 languages. J. Phon. 27(2), 207–229 (1999). https://doi.org/10.1006/jpho.1999.0094

    Article  Google Scholar 

  52. Hutters, B.: Vocal fold adjustments in Danish voiceless obstruent production. Ann. Rep. Inst. Phon. Univ. Cph. 18, 293–385 (1984)

    Google Scholar 

  53. Orlikoff, R.F., Deliyski, D.D., Baken, R.J., Watson, B.C.: Validation of a glottographic measure of vocal attack. J. Voice 23(2), 164–168 (2009). https://doi.org/10.1016/j.jvoice.2007.08.004

    Article  Google Scholar 

  54. Mathieson, L.: Greene and Mathieson’s the Voice and its Disorders. Book, Whole, vol. 6th. Wiley, Hoboken (2013)

    Google Scholar 

  55. Kochis-Jennings, K.A., Finnegan, E.M., Hoffman, H.T., Jaiswal, S.: Laryngeal muscle activity and vocal fold adduction during chest, chestmix, headmix, and head registers in females. J. Voice 26(2), 182–193 (2012). https://doi.org/10.1016/j.jvoice.2010.11.002

    Article  Google Scholar 

  56. Hirano, M., Ohala, J., Vennard, W.: The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation. J. Speech Lang. Hear. Res. 12(3), 616–628 (1969)

    Article  Google Scholar 

  57. Sulter, A.M., Albers, F.W.: The effects of frequency and intensity level on glottal closure in normal subjects. Clin. Otolaryngol. Allied Sci. 21(4), 324–327 (1996)

    Article  Google Scholar 

  58. Zhang, Z.: Mechanics of human voice production and control. J. Acoust. Soc. Am. 140(4), 2614 (2016). https://doi.org/10.1121/1.4964509

    Article  Google Scholar 

  59. Sundberg, J.: Vocal fold vibration patterns and phonatory modes. Q. Prog. Status Rep. 35(2–3), 69–80 (1994)

    Google Scholar 

  60. Roark, R.M., Watson, B.C., Baken, R.J., Brown, D.J., Thomas, J.M.: Measures of vocal attack time for healthy young adults. J. Voice 26(1), 12–17 (2012). https://doi.org/10.1016/j.jvoice.2010.09.009

    Article  Google Scholar 

  61. Han, J.N., Stegen, K., Cauberghs, M., Van de Woestijne, K.P.: Influence of awareness of the recording of breathing on respiratory pattern in healthy humans. Eur. Respir. J. 10(1), 161–166 (1997). https://doi.org/10.1183/09031936.97.10010161

    Article  Google Scholar 

  62. Mitchell, H.L., Hoit, J.D., Watson, P.J.: Cognitive-linguistic demands and speech breathing. J. Speech Hear. Res. 39(1), 93–104 (1996)

    Article  Google Scholar 

  63. Plant, R.L.: The interrelationship of subglottic air pressure, fundamental frequency, and vocal intensity during speech. J. Voice Off. J. Voice Found. 14(2), 170–177 (2000). https://doi.org/10.1016/S0892-1997(00)80024-7

    Article  Google Scholar 

  64. Rothenberg, M., Mahshie, J.J.: Monitoring vocal fold abduction through vocal fold contact area. J. Speech Lang. Hear. Res. 31(3), 338–351 (1988)

    Article  Google Scholar 

  65. Milstein, C.F.: Laryngeal function associated with changes in lung volume during voice and speech production in normal speaking women. Ph.D., The University of Arizona (1999)

  66. Iwarsson, J.: Effects of inhalatory abdominal wall movement on vertical laryngeal position during phonation. J. Voice 15(3), 384–394 (2001). https://doi.org/10.1016/S0892-1997(01)00040-6

    Article  Google Scholar 

  67. Sundberg, J.E.: Vocal fold vibration patterns and modes of phonation. Folia Phomiatrica et Logopaedica 47(4), 218–228 (1995)

    Article  Google Scholar 

  68. Titze, I.R.: On the relation between subglottal pressure and fundamental frequency in phonation. J. Acoust. Soc. Am. 85(2), 901–906 (1989)

    Article  Google Scholar 

  69. Zhang, Z.: Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. J. Acoust. Soc. Am. 137(2), 898–910 (2015). https://doi.org/10.1121/1.4906272

    Article  Google Scholar 

  70. Stathopoulos, E.T.: Relationship between intraoral air pressure and vocal intensity in children and adults. J. Speech Hear. Res. 29(1), 71–74 (1986)

    Article  Google Scholar 

  71. Rossing, T.D.: Springer Handbook of Acoustics. Book, Whole. Springer, New York (2007)

    Book  Google Scholar 

  72. Brogan, F.A., Tonndorf, J., Washburn, D.D.: Auditory difference limen of intensity in normal hearing subjects. A. M. A. Arch. Otolaryngol. 62(3), 292–305 (1955). https://doi.org/10.1001/archotol.1955.03830030058011

    Article  Google Scholar 

  73. Hirano, M., Vennard, W., Ohala, J.: Regulation of register, pitch and intensity of voice. An electromyographic investigation of intrinsic laryngeal muscles. Folia Phon. 22(1), 1–20 (1970)

    Article  Google Scholar 

  74. Rochet-Capellan, A., Fuchs, S.: Changes in breathing while listening to read speech: the effect of reader and speech mode. Front. Psychol. 4, 906 (2013). https://doi.org/10.3389/fpsyg.2013.00906

    Article  Google Scholar 

  75. Gallego, J., Perruchet, P.: Effect of practice on the voluntary control of a learned breathing pattern. Physiol. Behav. 49(2), 315–319 (1991). https://doi.org/10.1016/0031-9384(91)90049-T

    Article  Google Scholar 

  76. Hixon, T.J., Hoit, J.D.: Evaluation and Management of Speech Breathing Disorders: Principles and Methods, Book, Whole, vol. 1st. Redington Brown, Tucson (2005)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the 2013 Education Grant from the Australian Acoustical Society. We would also like to acknowledge the support of the Dr Liang Voice Program at the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Madill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, S., Lee, R., McCabe, P. et al. Effects of Different Lung Volume Conditions on Closed Quotient, Vocal Fundamental Frequency and Relative Intensity in Vocally Untrained Female Speakers. Acoust Aust 46, 339–347 (2018). https://doi.org/10.1007/s40857-018-0144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-018-0144-9

Keywords

Navigation