Skip to main content

Advertisement

Log in

An Unsupervised Acoustic Description of Fish Schools and the Seabed in Three Fishing Regions Within the Northern Demersal Scalefish Fishery (NDSF, Western Australia)

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Fisheries acoustics is now a standard tool for monitoring marine organisms. Another use of active-acoustics techniques is the potential to qualitatively describe fish school and seafloor characteristics or the distribution of fish density hotspots. Here, we use a geostatistical approach to describe the distribution of acoustic density hotspots within three fishing regions of the Northern Demersal Scalefish Fishery in Western Australia. This revealed a patchy distribution of hotspots within the three regions, covering almost half of the total areas. Energetic, geometric and bathymetric descriptors of acoustically identified fish schools were clustered using robust sparse k-means clustering with a Clest algorithm to determine the ideal number of clusters. Identified clusters were mainly defined by the energetic component of the school. Seabed descriptors considered were depth, roughness, first bottom length, maximum \(S_{v}\), kurtosis, skewness and bottom rise time. The ideal number of bottom clusters (maximisation rule with D-Index, Hubert Score and Weighted Sum of Squares), following the majority rule, was three. Cluster 1 (mainly driven by depth) was the sole type present in Region 1, Cluster 2 (mainly driven by roughness and maximum \(S_{v})\) dominated Region 3, while Region 2 was split up almost equally between Cluster 2 and 3. Detection of indicator species for the three seabed clusters revealed that the selected clusters could be related to biological information. Goldband snapper and miscellaneous fish were indicators for Cluster 1; Cods, Lethrinids, Red Emperor and other Lutjanids were linked with Cluster 2, while Rankin Cod and Triggerfish were indicators for Cluster 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dalen, J., Karp, W.A.: Collection of Acoustic Data from Fishing Vessels. ICES Cooperative Research Report No. 287, 83 pp (2007)

  2. Melvin, G.D., Kloser, R., Honkalehto, T.: The adaptation of acoustic data from commercial fishing vessels in resource assessment and ecosystem monitoring. Fish. Res 178, 13–25 (2016)

    Article  Google Scholar 

  3. Ressler, P.H., Fleischer, G.W., Wespestad, V.G., Harms, J.: Developing a commercial-vessel-based stock assessment survey methodology for monitoring the US west coast widow rockfish (Sebastes entomelas) stock. Fish. Res 99, 63–73 (2009)

    Article  Google Scholar 

  4. Fässler, S.M., Brunel, T., Gastauer, S., Burggraaf, D.: Acoustic data collected on pelagic fishing vessels throughout an annual cycle: operational framework, interpretation of observations, and future perspectives. Fish. Res. 178, 39–46 (2016)

    Article  Google Scholar 

  5. ICES: Report of the Workshop on Scrutinisation Procedures for Pelagic Ecosystem Surveys (WKSCRUT). ICES CM 2015/SSGIEOM:18. Hamburg (2015)

  6. Kloser, R.J., Ryan, T.E., Young, J.W., Lewis, M.E.: Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J. Mar. Sci. 66(6), 998–1006 (2009)

    Article  Google Scholar 

  7. Kloser, R.J., Ryan, T., Sakov, P., Williams, A., Koslow, J.A.: Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077 (2002). doi:10.1139/f02-076

    Article  Google Scholar 

  8. Simmonds, J., MacLennan, D.N.: Fisheries Acoustics: Theory and Practice. Wiley, New York (2005)

    Book  Google Scholar 

  9. Barbeaux, S.J.: Scientific Acoustic Data from Commercial Fishing Vessels: Eastern Bering Sea Walleye Pollock (Theragra chalcogramma), http://search.proquest.com.dbgw.lis.curtin.edu.au/docview/1013759483/abstract/3EAE09E9E2FC462CPQ/1 (2012)

  10. Barbeaux, S.J., Horne, J.K., Dorn, M.W.: Characterizing walleye pollock (Theragra chalcogramma) winter distribution from opportunistic acoustic data. ICES J. Mar. Sci. 70(6), 1162–1173 (2013)

    Article  Google Scholar 

  11. Gastauer, S., Scoulding, B., Parsons, M.: Towards acoustic monitoring of a mixed demersal fishery based on commercial data: the case of the Northern Demersal Scalefish Fishery (Western Australia). Fish. Res. 195, 91–104 (2017)

    Article  Google Scholar 

  12. Petitgas, P., Woillez, M., Doray, M., Rivoirard, J.: A geostatistical definition of hotspots for fish spatial distributions. Math. Geosci. 48, 65–77 (2016)

    Article  MathSciNet  Google Scholar 

  13. Woillez, M., Rivoirard, J., Petitgas, P.: Notes on survey-based spatial indicators for monitoring fish populations. Aquat. Living Resour. 22, 155–164 (2009)

    Article  Google Scholar 

  14. Woillez, M., Poulard, J.-C., Rivoirard, J., Petitgas, P., Bez, N.: Indices for capturing spatial patterns and their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. ICES J. Mar. Sci. J. Cons. 64, 537–550 (2007). doi:10.1093/icesjms/fsm025

    Article  Google Scholar 

  15. Gastauer, S., Fässler, S.M.M., O’Donnell, C., Høines, Å., Jakobsen, J.A., Krysov, A.I., Smith, L., Tangen, Ø., Anthonypillai, V., Mortensen, E., Armstrong, E., Schaber, M., Scoulding, B.: The distribution of blue whiting west of the British Isles and Ireland. Fish. Res. 183, 32–43 (2016). doi:10.1016/j.fishres.2016.05.012

    Article  Google Scholar 

  16. Campanella, F., Taylor, J.C.: Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016). doi:10.1016/j.fishres.2016.03.027

    Article  Google Scholar 

  17. De Robertis, A., McKelvey, D.R., Ressler, P.H.: Development and application of an empirical multifrequency method for backscatter classification. Can. J. Fish. Aquat. Sci. 67, 1459–1474 (2010)

    Article  Google Scholar 

  18. Horne, J.K.: Acoustic approaches to remote species identification: a review. Fish. Oceanogr. 9, 356–371 (2000)

    Article  Google Scholar 

  19. Koslow, J.A.: The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66(6), 966–973 (2009)

    Article  Google Scholar 

  20. Korneliussen, R.J., Diner, N., Ona, E., Berger, L., Fernandes, P.G.: Proposals for the collection of multifrequency acoustic data. ICES J. Mar. Sci. J. Cons. 65, 982–994 (2008). doi:10.1093/icesjms/fsn052

    Article  Google Scholar 

  21. Woillez, M., Ressler, P.H., Wilson, C.D., Horne, J.K.: Multifrequency species classification of acoustic-trawl survey data using semi-supervised learning with class discovery. J. Acoust. Soc. Am. 131, EL184–EL190 (2012)

    Article  Google Scholar 

  22. Cabreira, A.G., Tripode, M., Madirolas, A.: Artificial neural networks for fish-species identification. ICES J. Mar. Sci. J. Cons. 66, 1119–1129 (2009). doi:10.1093/icesjms/fsp009

    Article  Google Scholar 

  23. Haralabous, J., Georgakarakos, S.: Artificial neural networks as a tool for species identification of fish schools. ICES J. Mar. Sci. J. Cons. 53, 173–180 (1996). doi:10.1006/jmsc.1996.0019

    Article  Google Scholar 

  24. Legendre, P., Legendre, L.F.J.: Binumerical Ecology. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  25. Fernandes, P.G.: Classification trees for species identification of fish-school echotraces. ICES J. Mar. Sci. J. Cons. 66, 1073–1080 (2009). doi:10.1093/icesjms/fsp060

    Article  Google Scholar 

  26. Peña, M., Carbonell, A., Tor, A., Alvarez-Berastegui, D., Balbín, R., dos Santos, A., Alemany, F.: Nonlinear ecological processes driving the distribution of marine decapod larvae. Deep Sea Res. Part Oceanogr. Res. Pap. 97, 92–106 (2015). doi:10.1016/j.dsr.2014.11.017

    Article  Google Scholar 

  27. Peña, M., Calise, L.: Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species. Deep Sea Res. Part Oceanogr. Res. Pap. 110, 50–64 (2016). doi:10.1016/j.dsr.2016.01.006

    Article  Google Scholar 

  28. Korneliussen, R.J., Heggelund, Y., Eliassen, I.K., Johansen, G.O.: Acoustic species identification of schooling fish. ICES J. Mar. Sci. J. Cons. 66, 1111–1118 (2009)

    Article  Google Scholar 

  29. Fernandes, P.G., Korneliussen, R.J., Lebourges-Dhaussy, A., Masse, J., Iglesias, M., Diner, N., Ona, E., Knutsen, T., Gajate, J., Ponce, R.: The SIMFAMI Project: Species Identification Methods from Acoustic Multifrequency Information. Final Report to the EC No. Q5RS-2001-02054 (2006)

  30. Korneliussen, R.J., Heggelund, Y., Macaulay, G.J., Patel, D., Johnsen, E., Eliassen, I.K.: Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016). doi:10.1016/j.mio.2016.09.002

    Article  Google Scholar 

  31. Fernandes, P.G., Copland, P., Garcia, R., Nicosevici, T., Scoulding, B.: Additional evidence for fisheries acoustics: small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. (2016). doi:10.1093/icesjms/fsw091

    Google Scholar 

  32. Trenkel, V., Ressler, P.H., Jech, M., Giannoulaki, M., Taylor, C.: Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators. Mar. Ecol. Prog. Ser. 442, 285–301 (2011)

    Article  Google Scholar 

  33. Handegard, N.O., du Buisson, L., Brehmer, P., Chalmers, S.J., Robertis, A., Huse, G., Kloser, R., Macaulay, G., Maury, O., Ressler, P.H., et al.: Towards an acoustic-based coupled observation and modelling system for monitoring and predicting ecosystem dynamics of the open ocean. Fish Fish. 14, 605–615 (2013)

    Article  Google Scholar 

  34. Siwabessy, P.J., Tseng, Y., Gavrilov, A.N.: Seabed habitat mapping in coastal waters using a normal incident acoustic technique. Parameters 38, 198–864 (2004)

    Google Scholar 

  35. Anderson, J.T., Holliday, V., Kloser, R., Reid, D., Simard, Y.: Acoustic Seabed Classification of Marine Physical and Biological Landscapes. ICES Cooperative Research Report, 286, 198 pp (2007)

  36. Hamilton, L.J.: Acoustic Seabed Classification Systems. 150 pp, Department of Defence, Defence Science and Technology Organisation (2001)

  37. Cutter, G.R., Demer, D.A.: Seabed classification using surface backscattering strength versus acoustic frequency and incidence angle measured with vertical, split-beam echosounders. ICES J. Mar. Sci. J. Cons. (2013). doi:10.1093/icesjms/fst177

    Google Scholar 

  38. Maravelias, C.D.: Habitat selection and clustering of a pelagic fish: effects of topography and bathymetry on species dynamics. Can. J. Fish. Aquat. Sci. 56, 437–450 (1999)

    Article  Google Scholar 

  39. Greenstreet, S.P., Tuck, I.D., Grewar, G.N., Armstrong, E., Reid, D.G., Wright, P.J.: An assessment of the acoustic survey technique, RoxAnn, as a means of mapping seabed habitat. ICES J. Mar. Sci. J. Cons. 54, 939–959 (1997)

    Article  Google Scholar 

  40. Lazzari, M.A., Tupper, B.: Importance of shallow water habitats for demersal fishes and decapod crustaceans in Penobscot Bay, Maine. Environ. Biol. Fish. 63, 57–66 (2002)

    Article  Google Scholar 

  41. Collins, W.T., McConnaughey, R.A.: Acoustic classification of the sea floor to address essential fish habitat and marine protected area requirements. In: Proceedings of the Canadian Hydrographic Conference, pp. 369–377. Citeseer (1998)

  42. Bax, N.J., Williams, A.: Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Mar. Freshw. Res 52, 491–512 (2001)

    Article  Google Scholar 

  43. Link, J.S.: Translating ecosystem indicators into decision criteria. ICES J. Mar. Sci. 62, 569–576 (2005). doi:10.1016/j.icesjms.2004.12.015

    Article  Google Scholar 

  44. Hall, S.J., Mainprize, B.: Towards ecosystem-based fisheries management. Fish Fish. 5, 1–20 (2004). doi:10.1111/j.1467-2960.2004.00133.x

    Article  Google Scholar 

  45. Gastauer, S., Scoulding, B., Parsons, M.: Estimates of variability of goldband snapper target strength and biomass in three fishing regions within the Northern Demersal Scalefish Fishery (Western Australia). Fish. Res. 193, 250–262 (2017). doi:10.1016/j.fishres.2017.05.001

    Article  Google Scholar 

  46. Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., Dunford, A., Fässler, S., Gauthier, S., Hufnagle, L.T.: Calibration of Acoustic Instruments. ICES Cooperative Research Report, 133pp (2015)

  47. Demer, D.A., Soule, M.A., Hewitt, R.P.: A multiple-frequency method for potentially improving the accuracy and precision of in situ target strength measurements. J. Acoust. Soc. Am. 105, 2359–2376 (1999)

    Article  Google Scholar 

  48. Conti, S.G., Demer, D.A., Soule, M.A., Conti, J.H.: An improved multiple-frequency method for measuring in situ target strengths. ICES J. Mar. Sci. J. Cons. 62, 1636–1646 (2005)

    Article  Google Scholar 

  49. Mitson, R.: Causes and effects of underwater noise on fish abundance estimation. Aquat. Living Resour. 16, 255–263 (2003). doi:10.1016/S0990-7440(03)00021-4

    Article  Google Scholar 

  50. Ryan, T.E., Downie, R.A., Kloser, R.J., Keith, G.: Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. J. Cons. 72, 2482–2493 (2015). doi:10.1093/icesjms/fsv121

    Article  Google Scholar 

  51. Ballón, M., Bertrand, A., Lebourges-Dhaussy, A., Gutiérrez, M., Ayón, P., Grados, D., Gerlotto, F.: Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer. Prog. Oceanogr 91, 360–381 (2011). doi:10.1016/j.pocean.2011.03.001

    Article  Google Scholar 

  52. Lezama-Ochoa, A., Ballón, M., Woillez, M., Grados, D., Irigoien, X., Bertrand, A.: Spatial patterns and scale-dependent relationships between macrozooplankton and fish in the Bay of Biscay: an acoustic study. Mar. Ecol. Prog. Ser. 439, 151–168 (2011). doi:10.3354/meps09318

    Article  Google Scholar 

  53. Ona, E., Mitson, R.B.: Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci 53, 677–690 (1996). doi:10.1006/jmsc.1996.0087

    Article  Google Scholar 

  54. Nelson, T.A., Boots, B.: Detecting spatial hot spots in landscape ecology. Ecography 31, 556–566 (2008). doi:10.1111/j.0906-7590.2008.05548.x

    Article  Google Scholar 

  55. Bartolino, V., Maiorano, L., Colloca, F.: A frequency distribution approach to hotspot identification. Popul. Ecol. 53, 351–359 (2011). doi:10.1007/s10144-010-0229-2

    Article  Google Scholar 

  56. Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, N., Wareham, V., Beazley, L.: Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 9, e109365 (2014). doi:10.1371/journal.pone.0109365

    Article  Google Scholar 

  57. Matheron, G.: La déstructuration des hautes teneurs et le krigeage des indicatrices, Centre de Geostatistique et de Morphologie Mathematique, Note N-761, 33pp (1982)

  58. Rivoirard, J., Demange, C., Freulon, X., Lécureuil, A., Bellot, N.: A top-cut model for deposits with heavy-tailed grade distribution. Math. Geosci. 45, 967–982 (2013)

    Article  MATH  Google Scholar 

  59. Kondo, Y., Salibian-Barrera, M., Zamar, R.: A Robust and Sparse K-Means Clustering Algorithm. ArXiv Prepr. arXiv:1201.6082. (2012)

  60. Gordaliza, A.: Best approximations to random variables based on trimming procedures. J. Approx. Theory 64, 162–180 (1991). doi:10.1016/0021-9045(91)90072-I

    Article  MATH  MathSciNet  Google Scholar 

  61. Witten, D.M., Tibshirani, R.: A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713–726 (2010). doi:10.1198/jasa.2010.tm09415

    Article  MATH  MathSciNet  Google Scholar 

  62. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B. 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  63. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. (2002). doi:10.1186/gb-2002-3-7-research0036

    Google Scholar 

  64. Chipman, H., Tibshirani, R.: Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 286–301 (2006). doi:10.1093/biostatistics/kxj007

    Article  MATH  Google Scholar 

  65. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). doi:10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  66. Zuur, A.F., Ieno, E.N., Smith, G.M.: Principal component analysis and redundancy analysis. In: Analysing Ecological Data, pp. 193–224. Springer, New York (2007)

  67. Huh, M.-H., Park, D.Y.: Enhancing parallel coordinate plots. J. Korean Stat. Soc. 37, 129–133 (2008). doi:10.1016/j.jkss.2007.10.003

    Article  MATH  MathSciNet  Google Scholar 

  68. Echoview Software Pty Ltd: Echoview Software 6.1.44., Hobart (2015)

  69. Siwabessy, P.J., Tseng, Y., Gavrilov, A.N., Roughness, E.B., Hardness, E.B.: Seabed habitat mapping in coastal waters using a normal incident acoustic technique. Parameters 38, 198–864 (2004)

    Google Scholar 

  70. Chivers, R.C., Burns, D.: Acoustic surveying of the sea bed. Acoust. Bull. 17, 5–9 (1992)

    Google Scholar 

  71. Chivers, R.C., Emerson, N., Burns, D.R.: New acoustic processing for underway surveying. Hydrogr. J 56, 9–17 (1990)

    Google Scholar 

  72. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985). doi:10.1007/BF01908075

    Article  MATH  Google Scholar 

  73. Lebart, L., Morineau, A., Piron, M.: Statistique Exploratoire Multidimensionnelle. Dunod, Paris (2000)

  74. Hothorn, T., Everitt, B.S.: A Handbook of Statistical Analyses Using R. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  75. De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L.: Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982 (2012). doi:10.1111/j.2041-210X.2012.00246.x

    Article  Google Scholar 

  76. Dufrêne, M., Legendre, P.: Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997)

    Google Scholar 

  77. De Cáceres, M., Legendre, P., Moretti, M.: Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010). doi:10.1111/j.1600-0706.2010.18334.x

    Article  Google Scholar 

  78. Cáceres, M.D., Legendre, P.: Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009). doi:10.1890/08-1823.1

    Article  Google Scholar 

  79. Crowder, L.B., Cooper, W.E.: Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802–1813 (1982). doi:10.2307/1940122

    Article  Google Scholar 

  80. Schlosser, I.J.: Fish community structure and function along two habitat gradients in a headwater stream. Ecol. Monogr. 52, 395–414 (1982). doi:10.2307/2937352

    Article  Google Scholar 

  81. Walker, B.K., Jordan, L.K.B., Spieler, R.E.: Relationship of reef fish assemblages and topographic complexity on southeastern Florida coral reef habitats. J. Coast. Res. (2009). doi:10.2112/SI53-005.1

    Google Scholar 

  82. Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., Monaco, M.E.: Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol. Model. 204, 9–21 (2007). doi:10.1016/j.ecolmodel.2006.12.017

    Article  Google Scholar 

  83. Friedlander, A.M., Parrish, J.D.: Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998)

    Article  Google Scholar 

  84. Luckhurst, B.E., Luckhurst, K.: Analysis of the influence of substrate variables on coral reef fish communities. Mar. Biol. 49, 317–323 (1978)

    Article  Google Scholar 

  85. Ardron, J., Sointula, B.C.: A GIS recipe for determining benthic complexity: an indicator of species richness. In: Breman, J. (ed.) Marine Geography: GIS for the Oceans and Seas. Environmental Systems Research Institute, pp. 169–175. Redlands, CA (2002)

  86. Gratwicke, B., Speight, M.R.: The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005)

    Article  Google Scholar 

  87. Lawson, G.L., Barange, M., Fréon, P.: Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci. J. Cons. 58, 275–287 (2001)

    Article  Google Scholar 

  88. Massé, J., Koutsikopoulos, C., Patty, W.: The structure and spatial distribution of pelagic fish schools in multispecies clusters: an acoustic study. ICES J. Mar. Sci. J. Cons. 53, 155–160 (1996)

    Article  Google Scholar 

  89. Weill, A., Scalabrin, C., Diner, N.: MOVIES-B: an acoustic detection description software. Application to shoal species’ classification. Aquat. Living Resour. 6, 255–267 (1993)

    Article  Google Scholar 

  90. Fréon, P., Gerlotto, F., Soria, M.: Changes in school structure according to external stimuli: description and influence on acoustic assessment. Fish. Res. 15, 45–66 (1992)

    Article  Google Scholar 

  91. Castillo, J., Robotham, H.: Spatial structure and geometry of schools of sardine (Sardinops sagax) in relation to abundance, fishing effort, and catch in northern Chile. ICES J. Mar. Sci. J. Cons. 61, 1113–1119 (2004). doi:10.1016/j.icesjms.2004.07.011

    Article  Google Scholar 

  92. Korneliussen, R.J., Heggelund, Y., Eliassen, I.K., Øye, O.K., Knutsen, T., Dalen, J.: Combining multibeam-sonar and multifrequency-echosounder data: examples of the analysis and imaging of large euphausiid schools. ICES J. Mar. Sci. J. Cons. 66, 991–997 (2009). doi:10.1093/icesjms/fsp092

    Article  Google Scholar 

  93. Soria, M., Fréon, P., Gerlotto, F.: Analysis of vessel influence on spatial behaviour of fish schools using a multi-beam sonar and consequences for biomass estimates by echo-sounder. ICES J. Mar. Sci. J. Cons. 53, 453–458 (1996)

    Article  Google Scholar 

  94. Kloser, R.J., Ryan, T.E., Macaulay, G.J., Lewis, M.E.: In situ measurements of target strength with optical and model verification: a case study for blue grenadier, Macruronus novaezelandiae. ICES J. Mar. Sci. J. Cons. 68, 1986–1995 (2011)

    Article  Google Scholar 

  95. Ryan, T.E., Kloser, R.J., Macaulay, G.J.: Measurement and visual verification of fish target strength using an acoustic-optical system attached to a trawlnet. ICES J. Mar. Sci. J. Cons. 66, 1238–1244 (2009). doi:10.1093/icesjms/fsp122

    Article  Google Scholar 

  96. Siwabessy, P.J.W., Penrose, J.D., Kloser, R.J., Fox, D.R.: Seabed habitat classification. In: Proceedings of the International Conference High Resolution Shallow Water, pp. 1–9 (1999)

  97. Carrigy, M.A., Fairbridge, R.W.: Recent sedimentation, physiography and structure of the continental shelves of Western Australia. J. R. Soc. West. Aust. 38, 65–95 (1954)

  98. Nicholson, M.D., Jennings, S.: Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004). doi:10.1016/j.icesjms.2003.09.004

    Article  Google Scholar 

Download references

Acknowledgements

Data used within this study was collected through a project funded via the Australian Fisheries Research and Development Corporation (FRDC), with support from the Western Australian Department of Fisheries. A special thank you goes out to Kimberley Wildcatch and the crew of Carolina M., Adam and Alison Masters for their support and help during the data collection process. All data were collected according to the Australian Code of Practice for the care and use of animals for scientific purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Gastauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastauer, S., Scoulding, B. & Parsons, M. An Unsupervised Acoustic Description of Fish Schools and the Seabed in Three Fishing Regions Within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust Aust 45, 363–380 (2017). https://doi.org/10.1007/s40857-017-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-017-0100-0

Keywords

Navigation