Skip to main content
Log in

Influence of the Microstructure in the Acoustical Performance of Consolidated Lightweight Granular Materials

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

This paper reports an investigation of the acoustical performance of consolidated lightweight granular materials, made of perlite, arlite and vermiculite mixed with polyurethane resin. These materials could help combat the noise control and replace some products that lack the sufficient structural strength and require expensive protection when exposed to the elements. The advantages of using these composites in acoustic applications, like noise barriers, compared with commercial materials, are their very light mass combined with a relatively high structural strength, high physical–chemical stability and low cost. Besides, these materials could be considered more acceptable, from the health point of view, and better suited to operate in an aggressive environment. Acoustical properties were assessed according to ISO 10534–2: 1998. The microstructure, through non-acoustical properties (porosity, tortuosity and flow resistivity), and the acoustical performance (sound absorption spectrum and normalized acoustic impedance) were studied, showing the influence of the non-acoustical properties in the acoustical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barrigón, J.M., Gómez, V., Rey, G., Vílchez-Gómez, R.: Possible relation of noise levels in streets to the population of the municipalities in which they are located. J. Acoust. Soc. Am. 128, 86–92 (2010)

    Article  Google Scholar 

  2. Murphy, E., King, E.A.: Scenario analysis and noise action planning: modelling the impact of mitigation measures on population exposure. Appl. Acoust. 72, 487–494 (2011)

    Article  Google Scholar 

  3. Vasina, M., Hughes, D.C., Horoshenkov, K.V., Lapcík Jr., L.: The acoustical properties of consolidated expanded clay granulates. Appl. Acoust. 67, 787–796 (2006)

    Article  Google Scholar 

  4. Benkreira, H., Khan, A., Horoshenkov, K.V.: Sustainable acoustic and thermal insulation materials from elastomeric waste residues. Chem. Eng. Sci. 66, 4517–4571 (2011)

    Article  Google Scholar 

  5. Neithalath, N., Weiss, J., Olek, J.: Acoustic performance and damping behaviour of cellulose-cement composites. Cem. Concr. Compos. 26, 359–370 (2004)

  6. Shebl, S.S., Seddeq, H.S., Aglan, H.A.: Effect of micro-silica loading on the mechanical and acoustic properties of cement pastes. Constr. Build. Mater. 25, 3903–3908 (2011)

    Article  Google Scholar 

  7. Kim, H.K., Lee, H.K.: Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J. Sound. Vib. 329, 866–879 (2010)

    Article  Google Scholar 

  8. Pfretzschner, J., Rodríguez, R.M.: Acoustic properties of rubber crumbs. Polym. Test. 18, 81–92 (1999)

    Article  Google Scholar 

  9. Horoshenkov, K.V., Swift, P.: The effect of consolidation on the acoustic properties of loose rubber granulates. Appl. Acoust. 62, 665–690 (2001)

    Article  Google Scholar 

  10. Horoshenkov, K.V., Swift, P.: The acoustic properties of granular materials with pore size distribution close to log-normal. J. Acoust. Soc. Am. 110, 2371–2378 (2001)

    Article  Google Scholar 

  11. Glé, P., Gourdon, E., Arnaud, L.: Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 72, 249–259 (2011)

    Article  Google Scholar 

  12. Bartolini, R., Filippozzi, S., Princi, E., Schenone, C., Vicini, S.: Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Appl. Clay Sci. 48, 460–465 (2010)

    Article  Google Scholar 

  13. Asdrubali, F., Horoshenkov, K.V.: The acoustical properties of expanded clay granulates. J. Build. Acoust. 9, 85–98 (2002)

    Article  Google Scholar 

  14. Torres, M.L., García-Ruiz, P.A.: Lightweight pozzolanic materials used in mortars: evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Compos. 31, 114–119 (2009)

    Article  Google Scholar 

  15. Ray, A., Sriravindrarajah, R., Guerbois, J.P., Thomas, P., Border, S., Ray, H., Haggman, J., Joyce, P.: Evaluation of waste perlite fines in the production of construction materials. J. Therm. Anal. Calorim. 88, 279–283 (2007)

    Article  Google Scholar 

  16. Optiroc Áridos Ligeros, S.A.: Expanded clay. In: Arlite. Expanded clay. General Manual, Madrid (2000)

  17. González-Corrochano, B., Alonso-Azcárate, J., Rodas, M.: Production of lightweight aggregates from mining and industrial wastes. J. Environ. Manag. 90, 2801–2812 (2009)

    Article  Google Scholar 

  18. Marcos, C., Rodríguez, I.: Expansion behaviour of commercial vermiculites at 1000 \(^{\circ }{\rm C}\). Appl. Clay Sci. 48, 492–498 (2010)

  19. Maderuelo-Sanz, R., Martín-Castizo, M., Vilchez-Gómez, R.: The performance of resilient layers made from recycled rubber fluff for impact noise reduction. Appl. Acoust. 72, 823–828 (2011)

    Article  Google Scholar 

  20. Johnson, D.L., Plona, T.J., Scala, C., Pasierb, F., Kojima, H.: Tortuosity and acoustic slow waves. Phys. Rev. Lett. 49, 1840–1844 (1982)

    Article  Google Scholar 

  21. Brown, J.S.: Connection between formation factor for electrical resistivity and fluid-solid coupling factors in Biot’s equations for acoustic waves in fluid-filled porous media. Geophysics 45, 1269–1275 (1980)

    Article  Google Scholar 

  22. Umnova, O., Attenborough, K., Li, K.M.: Cell model calculations of dynamic drag parameters in packings of spheres. J. Acoust. Soc. Am. 107, 3113–3119 (2000)

    Article  Google Scholar 

  23. ISO 10534–2. Acoustics determination of sound absorption coefficient and impedance in impedance tubes. Part 2: transfer function-method. International Organization for Standardization, Geneva (1998)

  24. Oldham, D.J., Egan, C.A., Cookson, R.D.: Sustainable acoustic absorbers from the biomass. Appl. Acoust. 72, 350–363 (2011)

    Article  Google Scholar 

  25. Swift, M.J., Bris, P., Horoshenkov, K.V.: Acoustic absorption in recycled rubber granulates. Appl. Acoust. 57, 203–212 (1999)

    Article  Google Scholar 

  26. Horoshenkov, K.V., Swift, M.J.: The effect of consolidation on the acoustic properties of loose rubber granulates. Appl. Acoust. 62, 665–690 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the supply of materials to Perlindustria S.L. (Vallirana, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Maderuelo-Sanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maderuelo-Sanz, R., Nadal-Gisbert, A.V., Crespo-Amorós, J.E. et al. Influence of the Microstructure in the Acoustical Performance of Consolidated Lightweight Granular Materials. Acoust Aust 44, 149–157 (2016). https://doi.org/10.1007/s40857-016-0048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-016-0048-5

Keywords

Navigation