Skip to main content
Log in

Assessing Pulmonary Function Parameters Non-invasively by Electrical Bioimpedance Tomography

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Electrical Impedance Tomography (EIT) holds promise as a non-invasive method for measuring lung airflow, particularly in patients diagnosed with Chronic Obstructive Pulmonary Disease (COPD). Nonetheless, there are challenges regarding the clinical relevance of EIT. The main purpose of the present research was to identify the primary frequency components of impedance changes recorded by EIT and correlate them with pulmonary function parameters.

Methods

20 COPD patients were analyzed. Each volunteer was connected to a pneumotachometer and an EIT device. They performed three respiratory exercises, and pulmonary function parameters for each volunteer were acquired. The three impedance signals were convolved to simulate the behavior of the thorax as a black box with a single output signal. The convolved impedance signal was analyzed using FFT spectra. Subsequently, it was divided into seven frequency ranges, estimating the area under the curve and quartiles at 25%, 50%, and 75%. Each segment of the FFT spectrum was correlated with each pulmonary function test parameter.

Results

A significant correlation of over 60% between pulmonary function test parameters and the determinations from the FFT spectrum within seven distinct frequency ranges was observed. However, the determination coefficient (R2) ranged from approximately 10–66% due to data points that did not fit well, particularly in patients with severe pulmonary dysfunction.

Conclusion

To address the dispersion of data and enhance the correlation between determinations, it is imperative to adjust impedance determinations using anthropometric parameters or employ a mathematical equation that facilitates the characterization of limitations in lung airflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be made available upon reasonable request.

References

  1. Culver, B. H. (2012). Pulmonary function testing. In S. G. Spiro, G. A. Silvestri, & A. Agusti (Eds.), Clinical respiratory medicine (pp. 133–142). Elsevier Saunders.

    Chapter  Google Scholar 

  2. Rameckers, H., Kohl, J., & Boutellier, U. (2007). The influence of a mouthpiece and noseclip on breathing pattern at rest is reduced at high altitude. Respiratory Physiology & Neurobiology, 156(2), 165–170. https://doi.org/10.1016/j.resp.2006.09.001

    Article  Google Scholar 

  3. Virani, A., Baltaji, S., Young, M., & Dumont, T. (2021). Chronic obstructive pulmonary disease: Diagnosis and gold classification. Critical Care Nursing Quarterly, 44(1), 9–18. https://doi.org/10.1097/CNQ.0000000000000335

    Article  PubMed  Google Scholar 

  4. Halpin, D. M., Criner, G. J., Papi, A., Singh, D., Anzueto, A., Martinez, F. J., Agusti, A. A., Vogelmeier, C. F., Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. (2021). The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care, 203(1), 24–36. https://doi.org/10.1164/rccm.202009-3533SO

    Article  CAS  Google Scholar 

  5. ERS, Recommendation from ERS Group 9.1 (Respiratory function technologists/scientists) lung function testing during COVID-19 pandemic and beyond. Retrieved 16 Feb 2023, from https://ers.app.box.com/s/zs1uu88wy51monr0ewd990itoz4tsn2h

  6. M.C. McCormack, D.A. Kaminsky. American Thoracic Society. Pulmonary function laboratories: Advice Regarding COVID-19. Retrieved 16 Feb 2023, from https://www.thoracic.org/professionals/clinical-resources/disease-related-resources/pulmonary-function-laboratories.php

  7. Revelo, F. A. E. (2020). Electrical impedance tomography: Hardware fundamentals and medical applications. Ingeniería Solidaria, 16(3), 2–29. https://doi.org/10.16925/2357-6014.2020.03.02

    Article  Google Scholar 

  8. Khan, T. A., & Ling, S. H. (2019). Review on electrical impedance tomography: Artificial intelligence methods and its applications. Algorithms, 12(5), 70–88. https://doi.org/10.3390/a12050088

    Article  Google Scholar 

  9. Grasland-Mongrain, P., & Lafon, C. (2018). Review on biomedical techniques for imaging electrical impedance. IRBM, 39(4), 243–250. https://doi.org/10.1016/j.irbm.2018.06.001

    Article  Google Scholar 

  10. Wang, Z., Yue, S., Wang, H., & Wang, Y. (2020). Data preprocessing methods for electrical impedance tomography: A review. Physiological Measurement, 41(9), 09TR02. https://doi.org/10.1088/1361-6579/abb142

    Article  PubMed  Google Scholar 

  11. Zong, Z., Wang, Y., & Wei, Z. (2020). A review of algorithms and hardware implementations in electrical impedance tomography. Progress in Electromagnetics Research, 169, 59–71. https://doi.org/10.2528/PIER20120401

    Article  Google Scholar 

  12. Yuan, S., He, H., Long, Y., Chi, Y., Frerichs, I., & Zhao, Z. (2021). Rapid dynamic bedside assessment of pulmonary perfusion defect by electrical impedance tomography in a patient with acute massive pulmonary embolism. Pulm. Circ., 11(1), 1–3. https://doi.org/10.1177/2045894020984043

    Article  Google Scholar 

  13. He, H., Long, Y., Frerichs, I., & Zhao, Z. (2020). Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection. American Journal of Respiratory and Critical Care Medicine, 202(6), 881–882. https://doi.org/10.1164/rccm.202003-0554IM

    Article  PubMed  Google Scholar 

  14. Krauss, E., van der Beck, D., Schmalz, I., Wilhelm, J., Tello, S., Dartsch, R. C., Mahavadi, P., Korfei, M., Techner, E., Seeger, W., & Guenther, A. (2021). Evaluation of regional pulmonary ventilation in spontaneously breathing patients with Idiopathic Pulmonary Fibrosis (IPF) employing Electrical Impedance Tomography (EIT): A Pilot Study from the European IPF Registry (eurIPFreg). Japanese Journal of Clinical Medicine, 10(2), 192–210. https://doi.org/10.3390/jcm10020192

    Article  Google Scholar 

  15. Proença, M., Braun, F., Lemay, M., Solà, J., Adler, A., Riedel, T., Messerli, F. H., Thiran, J. P., Rimoldi, S. F., & Rexhaj, E. (2020). Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects. Science Report, 10(1), 1–8. https://doi.org/10.1038/s41598-020-78535-4

    Article  CAS  Google Scholar 

  16. Onland, W., Hutten, J., Miedema, M., Bos, L. D., Brinkman, P., Maitland-van der Zee, A. H., & van Kaam, A. H. (2020). Precision medicine in neonates: Future perspectives for the lung. Frontiers in Pediatrics, 8, 732–742. https://doi.org/10.3389/fped.2020.586061

    Article  Google Scholar 

  17. Cornejo, R., Iturrieta, P., Olegário, T. M. M., Kajiyama, C., Arellano, D., Guiñez, D., Cerda, M. A., Brito, R., Gajardo, A. I. J., Lazo, M., López, L., Morais, C. C. A., González, S., Zavala, M., Rojas, V., Medel, J. N., Hurtado, D. E., Bruhn, A., Ramos, C., & Estuardo, N. (2021). Estimation of changes in cyclic lung strain by electrical impedance tomography: Proof-of-concept study. Acta Anaesthesiologica. Scandinavica, 65(2), 228–235. https://doi.org/10.1111/aas.13723

    Article  PubMed  Google Scholar 

  18. Rara, A., Roubik, K., & Tyll, T. (2020). Effects of pleural effusion drainage in the mechanically ventilated patient as monitored by electrical impedance tomography and end-expiratory lung volume: A pilot study. Journal of Critical Care, 59, 76–80. https://doi.org/10.1016/j.jcrc.2020.06.001

    Article  PubMed  Google Scholar 

  19. Milne, S., Huvanandana, J., Nguyen, C., Duncan, J. M., Chapman, D. G., Tonga, K. O., Zimmermman, S. C., Slattery, A., King, G. G., & Thamrin, C. (2019). Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease. Journal of Applied Physiology, 127(5), 1441–1452. https://doi.org/10.1152/japplphysiol.00304.2019

    Article  PubMed  Google Scholar 

  20. Karagiannidis, C., Waldmann, A. D., Róka, P. L., Schreiber, T., Strassmann, S., Windisch, W., & Böhm, S. H. (2018). Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: A feasibility study. Critical Care, 22(1), 1–10. https://doi.org/10.1186/s13054-018-2137-3

    Article  Google Scholar 

  21. Vogt, B., Zhao, Z., Zabel, P., Weiler, N., & Frerichs, I. (2016). Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. American Journal of Physiology—Lung C, 311(1), L8–L19. https://doi.org/10.1152/ajplung.00463.2015

    Article  Google Scholar 

  22. Fornos Herrando, J. (2006) Estimació del Patró Ventilatori mitjanc¸ ant Tomografía d’Impedància Elèctrica. Projecte fi de Carrera, E.T.S.E.T.B. Universitat Politècnica de Catalunya.

  23. Technical specifications. MedGraphics products. Retrieved 17 Feb 2023, from http://www.sanomed.ee/images/Med.Graph/CPFSDusbSpiro.pdf

  24. Balleza-Ordaz, M., Alday-Perez, E., Vargas-Luna, M., Kashina, M. S., Huerta-Franco, M. R., Torres-González, L. A., & Riu-Costa, P. J. (2016). Tidal volume monitoring by a set of tetrapolar impedance measurements selected from the 16-electrodes arrangement used in electrical impedance tomography (EIT) technique. Calibration equations in a group of healthy males. Biomedical Signal Processing and Control, 27, 68–76. https://doi.org/10.1016/j.bspc.2016.02.001

    Article  Google Scholar 

  25. Balleza-Ordaz, M., Estrella-Cerón, R., Romero-Muñiz, T., & Vargas-Luna, M. (2019). Lung ventilation monitoring by electrical bioimpedance technique using three different 4-electrode thoracic configurations: Variability of calibration equations. Biomed. Signal Proces., 47, 401–412. https://doi.org/10.1016/j.bspc.2018.08.032

    Article  Google Scholar 

  26. Smith, S. W. (1999). The scientist and engineer’s guide to digital signal processing (2nd ed.). California Technical Pub.

    Google Scholar 

  27. Weeks, M. (2007). Digital signal processing using MATLAB and wavelets (1st ed.). Infinity Science Press LLC.

    Google Scholar 

  28. Mendes, L. P. D. S., Vieira, D. S. R., Gabriel, L. S., Ribeiro-Samora, G. A., De Andrade, A. D., Brandão, D. C., Goes, M. C., Fregonezi, G. A. F., Britto, R. R., & Parreira, V. F. (2020). Influence of posture, sex, and age on breathing pattern and chest wall motion in healthy subjects. Brazilian Journal of Physical Therapy, 24(3), 240–248.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors thank IDEA-Guanajuato and Direccion de Apoyo a la Investigación y al Posgrado (DAIP) for their financial support (codes CIIC 2023, 213/2023 and IDEAGTO/CONV/036/2022, respectively).

Author information

Authors and Affiliations

Authors

Contributions

FMVL: Data acquisition, data analysis and interpretation, the first draft of the manuscript. MIDC: Data analysis and interpretation, review of the manuscript. JPRC: Study design, data analysis and interpretation, review of the manuscript. SK: Study design, data acquisition, data analysis and interpretation, review of the manuscript, funding acquisition. JMBO: Study design, data acquisition, data analysis and interpretation, review of the manuscript, funding acquisition. All authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to S. Kashina or J. M. Balleza-Ordaz.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

All patients voluntarily consented to participate in the study, which had been previously approved by the institutional ethics committee.

Consent to Participate

All patients voluntarily consented to participate in the study by signing informed consent form.

Consent to Publish

The manuscript does not contain data that discloses confidential information or reveals the identity of the participants. Participants agreed that the obtained data would be published as simple data set.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 410 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Luna, F.M., Delgadillo-Cano, M.I., Riu-Costa, J.P. et al. Assessing Pulmonary Function Parameters Non-invasively by Electrical Bioimpedance Tomography. J. Med. Biol. Eng. 44, 67–78 (2024). https://doi.org/10.1007/s40846-023-00842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00842-8

Keywords

Navigation