Skip to main content
Log in

Biomechanical Analysis of Spine Hinge During Squats Using Inertial Sensors

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

To compare the spine hinge evaluated by sacral inertial measurement unit (IMU) versus both lumbar and sacral IMUs and to assess the influence of clinical variables on the spine hinge.

Methods

The study included 20 healthy participants (10 men and 10 women) and 18 participants (6 men and 12 women) with low back pain. Participants performed a bodyweight squat with IMU sensors attached to the lumbar spine, sacrum, and lateral thigh. The spine hinge was evaluated by two methods: lumbosacral hinge (LS hinge), defined as an abrupt increase in LS flexion, and sacral hinge, defined as a change in sacral direction from forward to backward. The amount of and ratio (LS ratio) between sacral and lumbar rotations were evaluated.

Results

The spine hinge detected only from the sacral IMU showed a high degree of agreement with that detected from both IMUs. The LS hinge occurred at a lower depth in females than in males (p = 0.001). Females had greater sacral rotation (p = 0.012) and a higher LS ratio (p < 0.001) than males. A larger passive hip flexion range was associated with later LS hinge occurrence in females (p = 0.041) but not in males (p = 0.965). Trunk muscle strength and presence of low back pain were not significant in either sex.

Conclusion

IMUs can detect the squat depth when the spine hinge occurs. A single sacral IMU is sufficient to detect the spine hinge. The movement patterns differ between sexes during squats, which should be considered to achieve the optimal squat depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the study are available from the corresponding author on reasonable request.

References

  1. Schoenfeld, B. J. (2010). Squatting kinematics and kinetics and their application to exercise performance. Journal of Strength and Conditioning Research, 24(12), 3497–3506. https://doi.org/10.1519/JSC.0b013e3181bac2d7.

    Article  PubMed  Google Scholar 

  2. Escamilla, R. F., Fleisig, G. S., Lowry, T. M., Barrentine, S. W., & Andrews, J. R. (2001). A three-dimensional biomechanical analysis of the squat during varying stance widths. Medicine and Science in Sports and Exercise, 33(6), 984–998. https://doi.org/10.1097/00005768-200106000-00019.

    Article  CAS  PubMed  Google Scholar 

  3. Fry, A. C., Smith, J. C., & Schilling, B. K. (2003). Effect of knee position on hip and knee torques during the barbell squat. Journal of Strength and Conditioning Research, 17(4), 629–633.

    PubMed  Google Scholar 

  4. Potvin, J. R., McGill, S. M., & Norman, R. W. (1991). Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine, 16(9), 1099–1107. https://doi.org/10.1097/00007632-199109000-00015.

    Article  CAS  PubMed  Google Scholar 

  5. Hwang, S., Kim, Y., & Kim, Y. (2009). Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting. BMC Musculoskeletal Disorders, 10(1), 15. https://doi.org/10.1186/1471-2474-10-15.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnet, V., Mazzà, C., Fraisse, P., & Cappozzo, A. (2013). Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. IEEE Transactions on Bio-Medical Engineering, 60(7), 1920–1926. https://doi.org/10.1109/TBME.2013.2245131.

    Article  PubMed  Google Scholar 

  7. Zawadka, M., Smolka, J., Skublewska-Paszkowska, M., Lukasik, E., & Gawda, P. (2020). How are squat timing and kinematics in the sagittal plane related to squat depth? Journal of Sports Science and Medicine, 19(3), 500–507.

    PubMed  PubMed Central  Google Scholar 

  8. Chen, Y., Xie, Z. Y., Huang, K. Y., Lin, H. T., & Chang, J. H. (2020). Biomechanical analysis to determine the most effective posture during squats and shallow squats while lifting weights in women. Journal of Medical and Biological Engineering, 40(3), 334–339. https://doi.org/10.1007/s40846-020-00513-y.

    Article  Google Scholar 

  9. Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 42(5), 679–687. https://doi.org/10.1007/BF02347551.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J., Yoon, C., Kim, K., Cho, M., Kim, H. C., & Chung, S. G. (2019). Lumbar stability in healthy individuals and low back pain patients quantified by wall plank-and-roll test. PM and R: The Journal of Injury Function and Rehabilitation, 11(5), 483–494. https://doi.org/10.1016/j.pmrj.2018.07.007.

    Article  Google Scholar 

  11. Bolink, S. A., Naisas, H., Senden, R., Essers, H., Heyligers, I. C., Meijer, K., & Grimm, B. (2016). Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system. Medical Engineering and Physics, 38(3), 225–231. https://doi.org/10.1016/j.medengphy.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  12. OʼReilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. M. (2017). Technology in strength and conditioning: Assessing bodyweight squat technique with wearable sensors. Journal of Strength and Conditioning Research, 31(8), 2303–2312. https://doi.org/10.1519/JSC.0000000000001957.

    Article  PubMed  Google Scholar 

  13. Lee, J., Joo, H., Lee, J., & Chee, Y. (2020). Automatic classification of squat posture using inertial sensors: Deep learning approach. Sensors (Basel, Switzerland), 20(2), 361. https://doi.org/10.3390/s20020361.

    Article  PubMed  Google Scholar 

  14. Zawadka, M., Smolka, J., Skublewska-Paszkowska, M., Lukasik, E., Bys, A., Zielinski, G., & Gawda, P. (2020). Sex-dependent differences in single-leg squat kinematics and their relationship to squat depth in physically active individuals. Scientific Reports, 10(1), 19601. https://doi.org/10.1038/s41598-020-76674-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graci, V., Van Dillen, L. R., & Salsich, G. B. (2012). Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait and Posture, 36(3), 461–466. https://doi.org/10.1016/j.gaitpost.2012.04.006.

    Article  PubMed  Google Scholar 

  16. McKean, M. R., Dunn, P. K., & Burkett, B. J. (2010). The lumbar and sacrum movement pattern during the back squat exercise. Journal of Strength and Conditioning Research, 24(10), 2731–2741. https://doi.org/10.1519/JSC.0b013e3181e2e166.

    Article  PubMed  Google Scholar 

  17. Swinton, P. A., Lloyd, R., Keogh, J. W., Agouris, I., & Stewart, A. D. (2012). A biomechanical comparison of the traditional squat, powerlifting squat, and box squat. Journal of strength and conditioning research, 26(7), 1805–1816. https://doi.org/10.1519/JSC.0b013e3182577067.

    Article  PubMed  Google Scholar 

  18. Jandre Reis, F. J., & Macedo, A. R. (2015). Influence of Hamstring tightness in pelvic, lumbar and trunk range of Motion in Low Back Pain and asymptomatic volunteers during Forward bending. Asian spine journal, 9(4), 535–540. https://doi.org/10.4184/asj.2015.9.4.535.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mourcou, Q., Fleury, A., Franco, C., Klopcic, F., & Vuillerme, N. (2015). Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors (Basel, Switzerland), 15(9), 23168–23187. https://doi.org/10.3390/s150923168.

    Article  PubMed  Google Scholar 

  20. Nath, N. D., Akhavian, R., & Behzadan, A. H. (2017). Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Applied Ergonomics, 62, 107–117. https://doi.org/10.1016/j.apergo.2017.02.007.

    Article  PubMed  Google Scholar 

  21. Decker, M. J., Torry, M. R., Wyland, D. J., Sterett, W. I., & Steadman, R., J (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics (Bristol Avon), 18(7), 662–669. https://doi.org/10.1016/s0268-0033(03)00090-1.

    Article  PubMed  Google Scholar 

  22. Gajdosik, R. L., Albert, C. R., & Mitman, J. J. (1994). Influence of hamstring length on the standing position and flexion range of motion of the pelvic angle, lumbar angle, and thoracic angle. The Journal of Orthopaedic and Sports Physical Therapy, 20(4), 213–219. https://doi.org/10.2519/jospt.1994.20.4.213.

    Article  CAS  PubMed  Google Scholar 

  23. López-Miñarro, P. A., Muyor, J. M., Belmonte, F., & Alacid, F. (2012). Acute effects of hamstring stretching on sagittal spinal curvatures and pelvic tilt. Journal of Human Kinetics, 31(2012), 69–78. https://doi.org/10.2478/v10078-012-0007-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kavcic, N., Grenier, S., & McGill, S. M. (2004). Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine, 29(11), 1254–1265. https://doi.org/10.1097/00007632-200406010-00016.

    Article  PubMed  Google Scholar 

  25. Grenier, S. G., & McGill, S. M. (2007). Quantification of lumbar stability by using 2 different abdominal activation strategies. Archives of Physical Medicine and Rehabilitation, 88(1), 54–62. https://doi.org/10.1016/j.apmr.2006.10.014.

    Article  PubMed  Google Scholar 

  26. Cholewicki, J., & McGill, S. M. (1996). Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clinical Biomechanics (Bristol Avon), 11(1), 1–15. https://doi.org/10.1016/0268-0033(95)00035-6.

    Article  CAS  PubMed  Google Scholar 

  27. McGill, S. M., Grenier, S., Kavcic, N., & Cholewicki, J. (2003). Coordination of muscle activity to assure stability of the lumbar spine. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 13(4), 353–359. https://doi.org/10.1016/s1050-6411(03)00043-9.

    Article  PubMed  Google Scholar 

  28. Barr, K. P., Griggs, M., & Cadby, T. (2007). Lumbar stabilization: A review of core concepts and current literature, part 2. American Journal of Physical Medicine and Rehabilitation, 86(1), 72–80. https://doi.org/10.1097/01.phm.0000250566.44629.a0.

    Article  PubMed  Google Scholar 

  29. Sung, P. S. (2013). A compensation of angular displacements of the hip joints and lumbosacral spine between subjects with and without idiopathic low back pain during squatting. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 23(3), 741–745. https://doi.org/10.1016/j.jelekin.2013.02.003.

    Article  PubMed  Google Scholar 

  30. Martinez-Calderon, J., Flores-Cortes, M., Morales-Asencio, J. M., & Luque-Suarez, A. (2020). Conservative interventions reduce fear in individuals with chronic low back pain: A systematic review. Archives of Physical Medicine and Rehabilitation, 101(2), 329–358. https://doi.org/10.1016/j.apmr.2019.08.470.

    Article  PubMed  Google Scholar 

  31. Wang, Y., Song, Q., Ma, T., Chen, Y., Li, H., & Liu, R. (2022). Transformation classification of human squat/sit-to-stand based on multichannel information fusion. International Journal of Advanced Robotic Systems, 19(4), 17298806221103708.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sung Pill Kim for the assistance in the application of the Kalman filter algorithm and calculation of the Cardan angles.

Funding

This work was supported by the National Research Foundation of Korea (Grant No. NRF- 2022R1C1C1006057) and a grant of the Patient-Centered Clinical Research Coordinating Center (PACEN) funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HC21C0064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keewon Kim.

Ethics declarations

Ethics approval

The study protocol was approved by the Institutional Review Board of Seoul National University Hospital (IRB approval number: D-1008-134-330). This study was conducted in accordance with the 1975 Declaration of Helsinki.

Competing Interests

No authors report conflicts of interest within the scope of the submitted work.

Consent for Publish

The authors affirm that human research participants provided informed consent for publication of the images in Figures.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Kwak, Y., Park, M.W. et al. Biomechanical Analysis of Spine Hinge During Squats Using Inertial Sensors. J. Med. Biol. Eng. 43, 394–404 (2023). https://doi.org/10.1007/s40846-023-00806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00806-y

Keywords

Navigation