Skip to main content
Log in

Investigation of the Mechanical Behavior of Polyester Meshes for Abdominal Surgery: A Preliminary Study

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Due to the high cost of synthetic surgical meshes, sterilized non-medical-grade nets are being used for hernia repair in less developed countries, even if a prior in vitro evaluation of their mechanical behavior is still lacking. In this work, two multifilament polyester nets, with material composition, pore size and fiber diameter similar to surgical meshes, are studied. The mechanical properties are compared with the ones of a standard surgical mesh made of a monofilament polyester fiber. Uniaxial tensile tests are performed to evaluate the mechanical behavior, investigating specific aspects as the effect of sample size and strain rate. Mechanical tests highlight an anisotropic behavior in both industrial nets, with stiffness largely depending on test direction. The surgical mesh exhibits a linear anisotropic response, with a different stiffening behavior and a lower degree of anisotropy than industrial nets. Therefore, a different global mechanical response may be expected in vivo. This investigation of the mechanical properties of polyester industrial nets provides a preliminary support to their use for abdominal surgery, even though a different mechanical response is found respect to surgical mesh due to their different structural conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shankaran, V., Weber, D. J., Reed, R. L., & Luchette, F. A. (2011). A review of available prosthetics for ventral hernia repair. Annals of Surgery, 253(1), 16–26.

    Article  Google Scholar 

  2. Frey, D. M., Wildisen, A., Hamel, C. T., Zuber, M., Oerti, D., & Metzger, J. (2007). Randomized clinical trial of Lichtenstein’s operation versus mesh plug for inguinal hernia repair. British Journal of Surgery, 94(1), 36–41.

    Article  Google Scholar 

  3. Franneby, U., Sandblom, G., Nordin, P., Olof, N., & Ulf, G. (2006). Risk factors for long-term pain after hernia surgery. Annals of Surgery, 244(2), 212–219.

    Article  Google Scholar 

  4. Wilhelm, T. J., Anemana, S., Kyamanywa, P., Rennie, J., Post, S., & Freudenberg, S. (2006). Anaesthesia for elective inguinal hernia repair in rural Ghana—appeal for local anaesthesia in resource-poor countries. Tropical Doctor, 36(3), 147–149.

    Article  Google Scholar 

  5. Clarke, M. G., Oppong, C., Simmermacher, R., Park, K., Kurzer, M., Vanotoo, L., et al. (2009). The use of sterilised polyester mosquito net mesh for inguinal hernia repair in Ghana. Hernia, 13(2), 155–159.

    Article  Google Scholar 

  6. Kingsnorth, A. (2007). Commercial mesh vs. nylon mosquito net for hernia repair. World Journal of Surgery, 31(4), 859.

    Article  Google Scholar 

  7. Gundre, N. P., Iyer, S. P., & Subramaniyan, P. (2012). Prospective randomized controlled study using polyethylene mesh for inguinal hernia meshplasty as a safe and cost-effective alternative to polypropylene mesh. Updates in Surgery, 64(1), 37–42.

    Article  Google Scholar 

  8. Freudenberg, S., Sano, D., Ouangre, E., Weiss, C., & Wilhelm, T. J. (2006). Commercial mesh versus nylon mosquito net for hernia repair. A randomized double-blind study in Burkina Faso. World Journal of Surgery, 30(10), 1784–1789.

    Article  Google Scholar 

  9. Wilhelm, T. J., Freudenberg, S., Jonas, E., Grobholz, R., Post, S., & Kyamanywa, P. (2007). Sterilized mosquito net versus commercial mesh for hernia repair. An experimental study in goats in Mbarara/Uganda. European Surgical Research, 39(5), 312–317.

    Article  Google Scholar 

  10. Sanders, D. L., Kingsnorth, A. N., & Stephenson, B. M. (2013). Mosquito net mesh for abdominal wall hernioplasty: A comparison of material characteristics with commercial prosthetics. World Journal of Surgery, 37(4), 737–745.

    Article  Google Scholar 

  11. Ambroziak, A., Szepietowska, K., & Lubowiecka, I. (2016). Mechanical properties of mosquito nets in the context of hernia repair. Computer Methods in Biomechanics and Biomedical Engineering, 19(3), 286–296.

    Article  Google Scholar 

  12. Klinge, U., Klosterhalfen, B., Conze, J., Limberg, W., Obolenski, B., Ottinger, A. P., et al. (1998). Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. European Journal of Surgery, 164(12), 951–960.

    Article  Google Scholar 

  13. Saberski, E. R., Orenstein, S. B., & Novitsky, Y. W. (2011). Anisotropic evaluation of synthetic surgical meshes. Hernia, 15(1), 47–52.

    Article  Google Scholar 

  14. Deeken, C. R., Abdo, M. S., Frisella, M. M., & Matthews, B. D. (2011). Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair. Journal of the American College of Surgeons, 212(1), 68–79.

    Article  Google Scholar 

  15. Deeken, C. R., Thompson, D. M., Jr., Castile, R. M., & Lake, S. P. (2014). Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. Journal of the Mechanical Behavior of Biomedical Materials, 38, 6–16.

    Article  Google Scholar 

  16. Wolf, M. T., Carruthers, C. A., Dearth, C. L., Crapo, P. M., Huber, A., Burnsed, O. A., et al. (2014). Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research, Part A, 102(1), 234–246.

    Article  Google Scholar 

  17. Rohrnbauer, B., & Mazza, E. (2014). Uniaxial and biaxial mechanical characterization of a prosthetic mesh at different length scales. Journal of the Mechanical Behavior of Biomedical Materials, 29, 7–19.

    Article  Google Scholar 

  18. Todros, S., Pavan, P. G., Pachera, P., & Natali, A. N. (2017). Synthetic surgical meshes used in abdominal wall surgery: Part II—biomechanical aspects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(4), 892–903.

    Article  Google Scholar 

  19. Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103–117.

    Article  Google Scholar 

  20. Snyder, C. W., Graham, L. A., Vick, C. C., Gray, S. H., Finan, K. R., & Hawn, M. T. (2011). Patient satisfaction, chronic pain, and quality of life after elective incisional hernia repair: Effects of recurrence and repair technique. Hernia, 15(2), 123–129.

    Article  Google Scholar 

  21. Maurer, M. M., Rohrnbauer, B., Feola, A., Deprest, J., & Mazza, E. (2014). Mechanical biocompatibility of prosthetic meshes: A comprehensive protocol for mechanical characterization. Journal of the Mechanical Behavior of Biomedical Materials, 40, 42–58.

    Article  Google Scholar 

  22. Hernández-Gascón, B., Peña, E., Pascual, G., Rodríguez, M., Bellón, J. M., & Calvo, B. (2012). Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects. Journal of the Mechanical Behavior of Biomedical Materials, 5(1), 257–271.

    Article  Google Scholar 

  23. Pachera, P., Pavan, P. G., Todros, S., Cavinato, C., Fontanella, C. G., & Natali, A. N. (2016). A numerical investigation of the healthy abdominal wall structures. Journal of Biomechanics, 49(9), 1818–1823.

    Article  Google Scholar 

  24. Szymczak, C., Lubowiecka, I., Tomaszewska, A., & Smietański, M. (2012). Investigation of abdomen surface deformation due to life excitation: Implications for implant selection and orientation in laparoscopic ventral hernia repair. Clinical Biomechanics, 27(2), 105–110.

    Article  Google Scholar 

  25. Velayudhan, S., Martin, D., & Cooper-White, J. (2009). Evaluation of dynamic creep properties of surgical mesh prostheses-uniaxial fatigue. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91(1), 287–296.

    Article  Google Scholar 

  26. Ben Abdelounis, H., Nicolle, S., Otténio, M., Beillas, P., & Mitton, D. (2013). Effect of two loading rates on the elasticity of the human anterior rectus sheath. Journal of the Mechanical Behavior of Biomedical Materials, 20, 1–5.

    Article  Google Scholar 

  27. Kirilova, M. (2012). Time-dependent properties of human umbilical fascia. Connective Tissue Research, 53(1), 21–28.

    Article  MathSciNet  Google Scholar 

  28. Li, X., Kruger, J. A., Jor, J. W., Wong, V., Dietz, H. P., Nash, M. P., et al. (2014). Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. Journal of the Mechanical Behavior of Biomedical Materials, 37, 48–55.

    Article  Google Scholar 

  29. Pavan, P. G., Pachera, P., Todros, S., Tiengo, C., & Natali, A. N. (2016). Mechanical characterization of animal derived grafts for surgical implantation. Journal of Mechanics in Medicine and Biology, 16, 1650023.

    Article  Google Scholar 

  30. Hernández-Gascón, B., Peña, E., Grasa, J., Pascual, G., Bellón, J. M., & Calvo, B. (2013). Mechanical response of the herniated human abdomen to the placement of different prostheses. Journal of Biomechanical Engineering, 135(5), 51004.

    Article  Google Scholar 

  31. Todros, S., Pavan, P. G., & Natali, A. N. (2017). Synthetic surgical meshes used in abdominal wall surgery: Part I—materials and structural conformation. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(3), 689–699.

    Article  Google Scholar 

  32. Pélissier, E. P. (2001). Inguinal hernia: The size of the mesh. Hernia, 5(4), 169–171.

    Article  Google Scholar 

  33. Guérin, G., & Turquier, F. (2013). Impact of the defect size, the mesh overlap and the fixation depth on ventral hernia repairs: A combined experimental and numerical approach. Hernia, 17(5), 647–655.

    Article  Google Scholar 

  34. Todros, S., Natali, A. N., Pace, G., & Di Noto, V. (2013). Correlation between chemical and mechanical properties in renewable poly(ether-block-amide)s for biomedical applications. Macromolecular Chemistry and Physics, 214(18), 2061–2072.

    Article  Google Scholar 

  35. Todros, S., Venturato, C., Natali, A. N., Pace, G., & Di Noto, V. (2014). Effect of steam on structure and mechanical properties of biomedical block copolymers. Journal of Polymer Science Part B: Polymer Physics, 52(20), 1337–1346.

    Article  Google Scholar 

  36. Sharma, M., Sharma, D. B., Chandrakar, S. K., & Sharma, D. (2015). Histopathological comparison of mosquito net with polypropylene mesh for hernia repair: An experimental study in rats. Indian Journal of Surgery, 77(2), 511–514.

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Todros.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todros, S., Pachera, P., Pavan, P.G. et al. Investigation of the Mechanical Behavior of Polyester Meshes for Abdominal Surgery: A Preliminary Study. J. Med. Biol. Eng. 38, 654–665 (2018). https://doi.org/10.1007/s40846-017-0337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0337-y

Keywords

Navigation