Skip to main content

Advertisement

Log in

Investigation of the Possibility to Reduce Susceptibility Artifacts in MRI Knee Examination

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The aim of this present study is to evaluate the reduction of susceptibility artifacts by increasing bandwidth (BW) and echo train length (ETL) in proton density turbo spin echo (PD TSE) sequences with and without fat saturation (FS) and in turbo inversion recovery magnitude (TIRM) sequences. We compared: (1) TIRM coronal (COR) with TIRM COR with high (H) BW and Long ETL; (2) PD TSE sagittal (SAG) FS with the PD TSE SAG FS with (H) BW; (3) PD TSE SAG with PD TSE SAG with (H) BW; (4) PD TSE SAG with PD TSE SAG with (H) BW and Long ETL. A quantitative analysis measured the extent of the susceptibility artifacts. A qualitative analysis evaluated the susceptibility artifacts, image distortion and effectiveness of fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. In the quantitative analysis, modified TIRM appears superior. In the qualitative analysis, the modified TIRM appears superior in 8/10 characteristics. The modified PD TSE FS is superior to the conventional regarding the susceptibility artifacts, image distortion and the depiction of bone marrow and cartilage and fat saturation. The modified PD TSE with (H) BW is found to be superior to the conventional PD TSE only in cartilage. In these sequences, when ETL was increased there were significant differences in four characteristics (ghost artifacts, cartilage, menisci and muscles). TIRM sequences with an increased BW and ETL are proposed to be used in daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lin, E. (2010). Magnetic resonance imaging of the knee: Clinical significance of common findings. Current Problems in Diagnostic Radiology, 39, 152–159.

    Article  Google Scholar 

  2. Koch, K. M., Hargreaves, B. A., Pauly, K. B., Chen, W., Gold, G. E., & King, K. F. (2010). Magnetic resonance imaging near metal implants. Journal of Magnetic Resonance Imaging, 32, 773–787.

    Article  Google Scholar 

  3. Hargreaves, B. A., Worters, P. W., Pauly, K. B., Pauly, J. M., Koch, K. M., & Gold, G. E. (2011). Metal-induced artifacts in MRI. American Journal of Roentgenology, 197, 547–555.

    Article  Google Scholar 

  4. Simmons, A., Tofts, P. S., Barker, G. J., & Arridge, S. R. (1994). Sources of intensity nonuniformity in spin echo images at 1.5T. Magnetic Resonance in Medicine, 32, 121–128.

    Article  Google Scholar 

  5. Beuf, O., Briguet, A., Lissac, M., & Davis, R. (1996). Magnetic resonance imaging for the determination of magnetic susceptibility of materials. Journal of Magnetic Resonance Series B, 112, 111–118.

    Article  Google Scholar 

  6. Bakker, C. J., Bhagwandien, R., Moerland, M. A., & Ramos, L. M. (1994). Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magnetic Resonance Imaging, 12, 767–774.

    Article  Google Scholar 

  7. Bakker, C. J., Moerland, M. A., Bhagwandien, R., & Beersma, R. (1992). Analysis of machine-dependent and object-induced geometric distortion in 2DFT MR imaging. Magnetic Resonance Imaging, 10, 597–608.

    Article  Google Scholar 

  8. Schenck, J. F. (1996). The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 23, 815–850.

    Article  Google Scholar 

  9. Ludeke, K. M., Roschmann, P., & Tischler, R. (1985). Susceptibility artefacts in NMR imaging. Magnetic Resonance Imaging, 3, 329–343.

    Article  Google Scholar 

  10. Escobedo, E. M., Hunter, J. C., Zink-Brody, G. C., Wilson, A. J., Harrison, S. D., & Fisher, D. J. (1996). Usefulness of turbo spin-echo MR imaging in the evaluation of meniscal tears: Comparison with a conventional spin-echo sequence. American Journal of Roentgenology, 167, 1223–1227.

    Article  Google Scholar 

  11. Ha, T. P., Li, K. C., Beaulieu, C. F., Bergman, G., Ch’en, I. Y., Eller, D. J., et al. (1998). Anterior Cruciate Ligament injury: Fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. American Journal of Roentgenology, 170, 1215–1219.

    Article  Google Scholar 

  12. Bredella, M. A., Tirman, P. F., Wischer, T. K., Belzer, J., Taylor, A., & Genant, H. K. (2000). Reactive synovitis of the knee joint: MR imaging appearance with arthroscopic correlation. Skeletal Radiology, 29, 577–582.

    Article  Google Scholar 

  13. Jansson, K. A., Karjalainen, P. T., Harilainen, A., Sandelin, J., Soila, K., Tallroth, K., et al. (2001). MRI of anterior cruciate ligament repair with patellar and hamstring tendon autografts. Skeletal Radiology, 30, 8–14.

    Article  Google Scholar 

  14. Lee, J. H., Singh, T. T., & Bolton, G. (2002). Axial fat-saturated FSE imaging of knee: Appearance of meniscal tears. Skeletal Radiology, 31, 384–395.

    Article  Google Scholar 

  15. Lee, M. J., Kim, S., Lee, S. A., Song, H. T., Huh, Y. M., Kim, D. H., et al. (2007). Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multidetector CT. RadioGraphics, 27, 791–803.

    Article  Google Scholar 

  16. Viano, A. M., Gronemeyer, S. A., Haliloglu, M., & Hoffer, F. A. (2000). Improved MR imaging for patients with metallic implants. Magnetic Resonance Imaging, 18, 287–295.

    Article  Google Scholar 

  17. White, L. M., Kim, J. K., Mehta, M., Merchant, N., Schweitzer, M. E., Morrison, W. B., et al. (2000). Complications of total hip arthroplasty: MR imaging-initial experience. Radiology, 215, 254–262.

    Article  Google Scholar 

  18. Olsen, R. V., Munk, P. L., Lee, M. J., Janzen, D. L., MacKay, A. L., Xiang, Q. S., et al. (2000). Metal artifact reduction sequence: Early clinical applications. Radiographics, 20, 699–712.

    Article  Google Scholar 

  19. Chang, S. D., Lee, M. J., Munk, P. L., Janzen, D. L., MacKay, A., & Xiang, Q. S. (2001). MRI of spinal hardware: Comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skeletal Radiology, 30, 213–218.

    Article  Google Scholar 

  20. Stradiotti, P., Curti, A., Castellazzi, G., & Zerbi, A. (2009). Metal related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: State of the art. European Spine Journal, 18, 102–108.

    Article  Google Scholar 

  21. Petersilge, C. A., Lewin, J. S., Duerk, J. L., Yoo, J. U., & Ghaneyem, A. J. (1996). Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. American Journal of Roentgenology, 166, 1213–1218.

    Article  Google Scholar 

  22. Kaur, P., Kumaran, S. S., Tripathi, R. P., Khushu, S., & Kaushik, S. (2007). Protocol error artifacts in MRI: Sources and remedies revisited. Radiography, 13, 291–306.

    Article  Google Scholar 

  23. White, L. M., & Buckwalter, K. A. (2002). Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Seminars in Musculoskeletal Radiology, 6, 5–17.

    Article  Google Scholar 

  24. Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M. (2007). Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Journal of Bone and Joint Surgery. American Volume, 89, 780–785.

    Google Scholar 

  25. Prodromos, C. C., Han, Y., Rogowski, J., Joyce, B., & Shi, K. (2007). A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy, 23, 1320–1325.

    Article  Google Scholar 

  26. Potter, H. G., Nestor, B. J., Sofka, C. M., Ho, S. T., Peters, L. E., & Salvati, E. A. (2004). Magnetic resonance imaging after total hip arthroplasty: Evaluation of periprosthetic soft tissue. Journal of Bone and Joint Surgery. American Volume, 86, 1947–1954.

    Article  Google Scholar 

  27. Lu, W., Pauly, K. B., Gold, G. E., Pauly, J. M., & Hargreaves, B. A. (2009). SEMAC: slice encoding for metal artifact correction in MRI. Magnetic Resonance in Medicine, 62, 66–76.

    Article  Google Scholar 

  28. Suh, J. S., Jeong, E. K., Shin, K. H., Cho, J. H., Na, J. B., Kim, D. H., et al. (1998). Minimizing artifacts caused by metallic implants at MR imaging: Experimental and clinical studies. American Journal of Roentgenology, 171, 1207–1213.

    Article  Google Scholar 

  29. Tartaglino, L. M., Flanders, A. E., Vinitski, S., & Friedman, D. P. (1994). Metallic artifacts on MR images of the post-operative spine: Reduction with fast spin-echo techniques. Radiology, 190, 565–569.

    Article  Google Scholar 

  30. Delfaut, E. M., Beltran, J., Johnson, G., Rousseau, J., Marchandise, X., & Cotten, A. (1999). Fat suppression in MR imaging: Techniques and pitfalls. Radiographics, 19, 373–382.

    Article  Google Scholar 

  31. Deely, D. M., & Schweitzer, M. E. (1997). MR imaging of bone marrow disorders. Radiologic Clinics of North America, 35, 193–212.

    Google Scholar 

  32. Steiner, R. M., Mitchell, D. G., Rao, V. M., & Schweitzer, M. E. (1993). Magnetic resonance imaging of diffuse bone marrow disease. Radiologic Clinics of North America, 31, 383–409.

    Google Scholar 

  33. Eustace, S., Keogh, C., Blake, M., Ward, R. J., Oder, P. D., & Dimasi, M. (2001). MR imaging of bone oedema: Mechanisms and interpretation. Clinical Radiology, 56, 4–12.

    Article  Google Scholar 

  34. Ulbrich, E. J., Sutter, R., Aguiar, R. F., Nittka, M., & Pfirrmann, C. W. (2012). STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. American Journal of Roentgenology, 199, 735–742.

    Article  Google Scholar 

  35. Lavdas, E., Mavroidis, P., Hatzigeorgiou, V., Roka, V., Arikidis, N., Oikonomou, G., et al. (2012). Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging. Magnetic Resonance Imaging, 30, 1099–1110.

    Article  Google Scholar 

  36. Yoshioka, H., Stevens, K., Hargreaves, B. A., Steines, D., Genovese, M., Dillingham, M. F., et al. (2004). Magnetic resonance imaging of articular cartilage of the knee: Comparison between fat suppressed threedimensional SPGR imaging, fat -suppressed FSE imaging, and fat suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. Journal of Magnetic Resonance Imaging, 20, 857–864.

    Article  Google Scholar 

  37. Lavdas, E., Topalzikis, T., Mavroidis, P., Kyriakis, I., Roka, V., Kostopoulos, S., et al. (2013). Comparison of PD BLADE with fat saturation (FS), PD FS and T2 3D DESS with water excitation (WE) in detecting articular knee cartilage defects. Magnetic Resonance Imaging, 31, 1255–1262.

    Article  Google Scholar 

  38. Lee, Y., Han, Y., & Park, H. (2014). A new susceptibility-weighted image reconstruction method for the reduction of background phase artifacts. Magnetic Resonance in Medicine, 71, 1324–1335.

    Article  Google Scholar 

  39. Kaushik, S. S., Karr, R., Runquist, M., Marszalkowski, C., Sharma, A., Rand, S. D., et al. (2017). Quantifying metal-induced susceptibility artifacts of the instrumented spine at 1.5T using fast-spin echo and 3D-multispectral MRI. Journal of Magnetic Resonance Imaging, 45, 51–58.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank radiographer Ioannis Kaffes and Anna Vlachopoulou for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Mavroidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavroidis, P., Boci, N., Kostopoulos, S. et al. Investigation of the Possibility to Reduce Susceptibility Artifacts in MRI Knee Examination. J. Med. Biol. Eng. 37, 644–652 (2017). https://doi.org/10.1007/s40846-017-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0260-2

Keywords

Navigation