Skip to main content

Advertisement

Log in

Biomechanical Optimization of a Novel Circular External Fixator (Optimization of Circular External Fixator)

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate biomechanical optimization of the newly designed circular external fixator (CEF) system, used in the orthopaedics surgery, that is capable of continuous compression at the fracture line. External fixators are devices applied from outside the body to treat bone and joint injuries as well as to correct skeletal deformities. In this study, the effects of parametric changes on CEF mounted for the fracture were investigated with using response surface optimization (RSO) module in ANSYS software using the finite element method. The pressure acting on fracture line is an essential factor on fracture healing. The RSO module showed that the contribution of the parameters on this essential factor was as follows in the descending order; pre-load, spring coefficient, wire diameter and angle between the wires. According to the results of the numerical study; (a) there was a positive correlation between the wire diameter and the normal stress at the fracture line. The increase in wire diameter and pre-loading caused an increase in the normal stress at the fracture line. (b) The angle between the wires has a relatively little effect on the whole system. (c) The most effective parameters on the system were determined as the pre-loading and spring coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Solomin, L. (2008). The basic principles of external skeletal fixation using the Ilizarov device (Google eBook). Milan: Springer.

    Google Scholar 

  2. Moss, D. P., & Tejwani, N. C. (2007). Biomechanics of external fixation: A review of the literature. Bulletin of the NYU Hospital for Joint Diseases, 65, 294–299.

    Google Scholar 

  3. Lewis, D. D., Bronson, D. G., Samchukov, M. L., Welch, R. D., & Stallings, J. T. (1998). Biomechanics of circular external skeletal fixation. Veterinary Surgery, 27, 454–464.

    Article  Google Scholar 

  4. McCoy, M. T., Chao, E. Y., & Kasman, R. A. (1983). Comparison of mechanical performance in four types of external fixators. Clinical Orthopaedics and Related Research, 180, 23–33.

    Google Scholar 

  5. De Bastiani, G., Aldegheri, R., & Renzi Brivio, L. (1984). The treatment of fractures with a dynamic axial fixator. The Journal of Bone and Joint Surgery. British Volume, 66(4), 538–545.

    Google Scholar 

  6. Aronson, J., Harrison, B., Boyd, C. M., Cannon, D. J., & Lubansky, H. J. (1988). Mechanical induction of osteogenesis: The importance of pin rigidity. Journal of Pediatric Orthopaedics, 8(4), 396–401.

    Article  Google Scholar 

  7. Gasser, B., Boman, B., Wyder, D., & Schneider, E. (1990). Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. Journal of Biomechanical Engineering, 112(1), 15–21.

    Article  Google Scholar 

  8. Paley, D., Fleming, B., Catagni, M., Kristiansen, T., & Pope, M. (1990). Mechanical evaluation of external fixators used in limb lengthening. Clinical Orthopaedics and Related Research, 250, 50–57.

    Google Scholar 

  9. Allard, R. N., Birch, J. G., & Samchukov, M. L. (1992). An analysis of the parameters affecting the wire tensions of an Ilizarov ring/drop-wire construct. In 3rd Annual ASAMI scientific meet.

  10. Aronson, J., & Harp, J. H. (1992). Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clinical Orthopaedics and Related Research, 280, 23–29.

    Google Scholar 

  11. Juan, J. A., Prat, J., Vera, P., Hoyos, J. V., Sánchez-Lacuesta, J., Peris, J. L., et al. (1992). Biomechanical consequences of callus development in Hoffmann, Wagner, Orthofix and Ilizarov external fixators. Journal of Biomechanics, 25(9), 995–1006.

    Article  Google Scholar 

  12. Orbay, G. L., Frankel, V. H., & Kummer, F. J. (1992). The effect of wire configuration on the stability of the Ilizarov external fixator. Clinical Orthopaedics and Related Research, 279, 299–302.

    Google Scholar 

  13. Verim, O. (2015). Ortopedi alanında kullanılan dairesel dış sabitleyicilerin biyomekanik optimizasyonu ve tavşanlar üzerinde uygulaması. Afyon Kocatepe Üniversitesi.

  14. Miramini, S., Zhang, L., Richardson, M., Pirpiris, M., Mendis, P., Oloyede, K., et al. (2015). Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Computer Methods in Biomechanics and Biomedical Engineering, 18(8), 900–913. doi:10.1080/10255842.2013.855729.

    Article  Google Scholar 

  15. Mitousoudis, A. S., Magnissalis, E. A., & Kourkoulis, S. K. (2010). A biomechanical analysis of the Ilizarov external fixator. In EPJ web of conferences (p. 6: 21002).

  16. Paley, D. (1991). Biomechanics of the Ilizarov external fixator (pp. 33–41). Milano: Medi Surgical Video.

  17. Catagni, M. (1991). Fractures of the leg (tibia), operative principles of Ilizarov (pp. 91–124). Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  18. Kummer, F. J. (1992). Biomechanics of the Ilizarov external fixator. Clinical Orthopaedics and Related Research, 280, 11–14.

    Google Scholar 

  19. Lacroix, D., & Prendergast, P. J. (2002). Three-dimensional simulation of fracture repair in the human tibia. Computer Methods in Biomechanics and Biomedical Engineering, 5(5), 369–376.

    Article  Google Scholar 

  20. Noordeen, M. H., Lavy, C. B., Shergill, N. S., Tuite, J. D., & Jackson, A. M. (1995). Cyclical micromovement and fracture healing. The Journal of Bone and Joint Surgery. British Volume, 77, 645–648.

    Google Scholar 

  21. Yamaji, T., Ando, K., Wolf, S., Augat, P., & Claes, L. (2001). The effect of micromovement on callus formation. Journal of Orthopaedic Science, 6(6), 571–575.

    Article  Google Scholar 

  22. Augat, P., Burger, J., Schorlemmer, S., Henke, T., Peraus, M., & Claes, L. (2003). Shear movement at the fracture site delays healing in a diaphyseal fracture model. Journal of Orthopaedic Research, 21(6), 1011–1017.

    Article  Google Scholar 

  23. Schell, H., Epari, D. R., Kassi, J. P., Bragulla, H., Bail, H. J., & Duda, G. N. (2005). The course of bone healing is influenced by the initial shear fixation stability. Journal of Orthopaedic Research, 23(5), 1022–1028.

    Article  Google Scholar 

  24. Wolf, D. I. S., Janousek, A., Pfeil, J., Veith, W., Haas, F., Duda, G., et al. (1998). The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clinical Biomechanics, 13(4–5), 359–364.

    Article  Google Scholar 

  25. Bishop, N. E., van Rhijn, M., Tami, I., Corveleijn, R., Schneider, E., & Ito, K. (2006). Shear does not necessarily inhibit bone healing. Clinical Orthopaedics and Related Research, 443, 307–314.

    Article  Google Scholar 

  26. Claes, L., Augat, P., Suger, G., & Wilke, H. J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 15(4), 577–584.

    Article  Google Scholar 

  27. Bilgili, H. (2004). Circular external fixation system of Ilizarov: Part V. Fracture treatment by the Ilizarov technique. Veteriner Cerrahi Dergisi, 10, 75–90.

    Google Scholar 

  28. Korkmaz, M., Öztürk, H., Bulut, O., Ünsaldı, T., & Kaloğlu, C. (2005). Ilizarov tipi eksternal fiksatörle belirli sürekli distraksiyonun kırık iyileşmesi üzerine etkisi: Tavşanda deneysel çalışma. Acta Orthopaedica Traumatologica Turcica, 39, 247–257.

    Google Scholar 

  29. Kenwright, J., Richardson, J. B., Cunningham, J. L., White, S. H., Goodship, A. E., & Adams, M. A. (1991). Axial movement and tibial fractures. A controlled randomised trial of treatment. The Journal of Bone and Joint Surgery. British Volume, 73, 654–659.

    Google Scholar 

  30. Verim, Ö., Taşgetiren, S., Er, M. S., Timur, M., & Yuran, A. F. (2013). Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis. International Journal of Medical Robotics and Computer Assisted Surgery. doi:10.1002/rcs.1442.

    Google Scholar 

  31. Verim, O., Tasgetiren, S., Er, M. S., Ozdemir, V., & Yuran, A. F. (2013). Anatomical evaluation and stress distribution of intact canine femur. International Journal of Medical Robotics and Computer Assisted Surgery, 9(1), 103–108.

    Article  Google Scholar 

  32. Toumanidou, T., Spyrou, L. A., & Aravas, N. (2011). A finite element model of the Ilizarov fixator system. In 2011 10th International workshop on biomedical engineering (pp. 1–4).

  33. Kumar, R., Gupta, A., Sharma, V. P., & Mishra, S. (2011). Strength of the Joshi external stabilising system. Journal of Orthopaedic Surgery (Hong Kong), 19(1), 72–75.

    Article  Google Scholar 

  34. Karunratanakul, K., Kerckhofs, G., Lammens, J., Vanlauwe, J., Schrooten, J., & Van Oosterwyck, H. (2013). Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model. Medical Engineering and Physics, 35(7), 1037–1043.

    Article  Google Scholar 

  35. Kim, H. J., Chang, S. H., & Jung, H. J. (2012). The simulation of tissue differentiation at a fracture gap using a mechano-regulation theory dealing with deviatoric strains in the presence of a composite bone plate. Composites Part B Engineering, 43(3), 978–987.

    Article  Google Scholar 

  36. Gushue, D. L., Houck, J., & Lerner, A. L. (2005). Rabbit knee joint biomechanics: Motion analysis and modeling of forces during hopping. Journal of Orthopaedic Research, 23(4), 735–742.

    Article  Google Scholar 

  37. Çinçik, E. (2010). İğneleme yöntemiyle üretilen polyester/viskon karışımlı dokusuz yüzey özelliklerinin deneysel ve istatistiksel analizi. Çukurova Üniversitesi.

  38. Kilickap, E., & Huseyinoglu, M. (2010). Optimization and modelling of burr height by using response surface methodology and genetic algorithm in drilling AISI 316. Journal of Engineering of Faculty of Engineering in Dicle University, 1, 71–80.

    Google Scholar 

  39. Koç, B., & Ertekin, F. (2010). Yanıt yüzey yöntemi ve gıda işleme uygulamaları. Gıda Dergisi, 35.

  40. Orr, T. E., Villars, P. A., Mitchell, S. L., Hsu, H. P., & Spector, M. (2001). Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials, 22(14), 1953–1959. doi:10.1016/S0142-9612(00)00370-7.

    Article  Google Scholar 

  41. DuQuesnay, D. L., Underhill, P. R., & Britt, H. J. (2003). Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading. International Journal of Fatigue, 25(5), 371–377.

    Article  Google Scholar 

  42. Lewandowski, J. J., Varadarajan, R., Smith, B., Tuma, C., Shazly, M., & Vatamanu, L. O. (2008). Tension and fatigue behavior of 316LVM 1 × 7 multi-strand cables used as implantable electrodes. Materials Science and Engineering A, 486(1–2), 447–454. doi:10.1016/j.msea.2007.11.016.

    Article  Google Scholar 

  43. Podolsky, A., & Chao, E. Y. (1993). Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clinical Orthopaedics and Related Research, 293, 61–70.

    Google Scholar 

  44. Van Oosterwyck, H., Duyck, J., Vander Sloten, J., Van der Perre, G., De Coomans, M., Lieven, S., et al. (1998). The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clinical Oral Implants Research, 9(6), 407–418.

    Article  Google Scholar 

  45. Huang, H.-M., Lee, S.-Y., Yeh, C.-Y., & Lin, C.-T. (2002). Resonance frequency assessment of dental implant stability with various bone qualities: A numerical approach. Clinical Oral Implants Research, 13(1), 65–74.

    Article  Google Scholar 

  46. Doblaré, M., Garcia, J. M., & Gómez, M. J. (2004). Modelling bone tissue fracture and healing: A review. Engineering Fracture Mechanics, 71(13–14), 1809–1840.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Afyon Kocatepe University, the Department of Scientific Research Projects Coordination under the Project No. 13. FEN. BIL. 43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Verim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verim, O., Volkan Yaprakci, M. & Karabulut, A. Biomechanical Optimization of a Novel Circular External Fixator (Optimization of Circular External Fixator). J. Med. Biol. Eng. 37, 760–768 (2017). https://doi.org/10.1007/s40846-017-0242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0242-4

Keywords

Navigation