Skip to main content

Advertisement

Log in

Effects of Porphyromonas gingivalis on Titanium Surface by Different Clinical Treatment

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

As peri-implantitis is associated with biofilm development, the characteristics of titanium implants may influence biofilm formation, and thereby increase the risk for inflammation. The objective of this study was to evaluate the effect of titanium surface roughness induced by various debridement methods of peri-implants, such as the use of an ultrasonic scaler, rubber polishing cup, gallium–aluminum–arsenide laser, and chlorhexidine (CHX) rinse, on Porphyromonas (P.) gingivalis. Surface debridement was performed by immersing titanium discs in CHX rinse for 24 h or treatment with a laser, polishing cup, or ultrasonic scaler for 60 s. Surface topography was examined using a profilometer. For the bacterial assay, specimens were inoculated with P. gingivalis for 2 h and incubated for 6, 12, and 24 h. After incubation, bacterial adhesion on the discs was quantified via spectrophotometric evaluation. Moreover, scanning electron microscopy (SEM) images were analyzed to quantify P. gingivalis colonization on the titanium surfaces. Data were analyzed using one-way analysis of variance and Pearson’s correlation test (p < 0.05). Scaled surfaces showed the highest surface roughness (Ra, p < 0.001). There was a significant positive correlation between Ra values and optical density measurements at all incubation times (p < 0.05). The quantitative evaluation of P. gingivalis attachment through SEM revealed that the amounts of bacteria were significantly lower in the control, laser, and CHX groups compared with those in the other groups (p < 0.05). Moreover, a significant positive correlation was found between Ra and attached P. gingivalis number obtained from SEM images (p < 0.05). In conclusion, polishing, CHX, and laser treatments of titanium surfaces provide the highest reduction in P. gingivalis biofilm mass and regrowth in vitro. This effect was enhanced as the smoothness of the titanium surface was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berglundh, T., Persson, L., & Klinge, B. (2002). A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. Journal of Clinical Periodontology, 29(s3), 197–212.

    Article  Google Scholar 

  2. Tonetti, M. S. (1998). Cigarette smoking and periodontal diseases: Etiology and management of disease. Annals of Periodontology, 3(1), 88–101.

    Article  Google Scholar 

  3. Leonhardt, Å., Renvert, S., & Dahlén, G. (1999). Microbial findings at failing implants. Clinical Oral Implants Research, 10(5), 339–345.

    Article  Google Scholar 

  4. Casado, P. L., Otazu, I. B., Balduino, A., de Mello, W., Barboza, E. P., & Duarte, M. E. L. (2011). Identification of periodontal pathogens in healthy periimplant sites. Implant Dentistry, 20(3), 226–235.

    Article  Google Scholar 

  5. Tabanella, G., Nowzari, H., & Slots, J. (2009). Clinical and microbiological determinants of ailing dental implants. Clinical Implant Dentistry and Related Research, 11(1), 24–36.

    Article  Google Scholar 

  6. Lambert, P. M., Morris, H., & Ochi, S. (1997). The influence of 0.12% chlorhexidine digluconate rinses on the incidence of infectious complications and implant success. Journal of Oral and Maxillofacial Surgery, 55(12 Suppl 5), 25–30.

    Article  Google Scholar 

  7. Meffert, R. M., Langer, B., & Fritz, M. E. (1992). Dental implants: A review. Journal of Periodontology, 63(11), 859–870.

    Article  Google Scholar 

  8. Mengel, R., Behle, M., & Flores-de-Jacoby, L. (2007). Osseointegrated implants in subjects treated for generalized aggressive periodontitis: 10-Year results of a prospective, long-term cohort study. Journal of Periodontology, 78(12), 2229–2237.

    Article  Google Scholar 

  9. Meschenmoser, A., d’Hoedt, B., Meyle, J., Elßner, G., Korn, D., Hämmerle, H., et al. (1996). Effects of various hygiene procedures on the surface characteristics of titanium abutments. Journal of Periodontology, 67(3), 229–235.

    Article  Google Scholar 

  10. Kawashima, H., Sato, S., Kishida, M., Yagi, H., Matsumoto, K., & Ito, K. (2007). Treatment of titanium dental implants with three piezoelectric ultrasonic scalers: An in vivo study. Journal of Periodontology, 78(9), 1689–1694.

    Article  Google Scholar 

  11. Schou, S., Holmstrup, P., Worthington, H. V., & Esposito, M. (2006). Outcome of implant therapy in patients with previous tooth loss due to periodontitis. Clinical Oral Implants Research, 17(S2), 104–123.

    Article  Google Scholar 

  12. Duarte, P. M., De Mendonça, A. C., Máximo, M. B. B., Santos, V. R., Bastos, M. F., & Nociti Júnior, F. H. (2009). Differential cytokine expressions affect the severity of peri-implant disease. Clinical Oral Implants Research, 20(5), 514–520.

    Article  Google Scholar 

  13. Quirynen, M., & Bollen, C. (1995). The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. Journal of Clinical Periodontology, 22(1), 1–14.

    Article  Google Scholar 

  14. Charalampakis, G., Leonhardt, Å., Rabe, P., & Dahlén, G. (2012). Clinical and microbiological characteristics of peri-implantitis cases: A retrospective multicentre study. Clinical Oral Implants Research, 23(9), 1045–1054.

    Article  Google Scholar 

  15. Ferraz, C. C. R., de Almeida Gomes, B. P. F., Zaia, A. A., Teixeira, F. B., & de Souza-Filho, F. J. (2001). In vitro assessment of the antimicrobial action and the mechanical ability of chlorhexidine gel as an endodontic irrigant. Journal of Endodontics, 27(7), 452–455.

    Article  Google Scholar 

  16. Löe, H., & Rindom Schiøtt, C. (1970). The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. Journal of Periodontal Research, 5(2), 79–83.

    Article  Google Scholar 

  17. Soskolne, A., Golomb, G., Friedman, M., & Sela, M. N. (1983). New sustained release dosage form of chlorhexidine for dental use. Journal of Periodontal Research, 18(3), 330–336.

    Article  Google Scholar 

  18. Stabholz, A., Sela, M. N., Friedman, M., Golomb, G., & Soskolne, A. (1986). Clinical and microbiological effects of sustained release chlorhexidine in periodontal pockets. Journal of Clinical Periodontology, 13(8), 783–788.

    Article  Google Scholar 

  19. Netuschil, L., Weiger, R., Preisler, R., & Brecx, M. (1995). Plaque bacteria counts and vitality during chlorhexidine, meridol and listerine mouthrinses. European Journal of Oral Sciences, 103(6), 355–361.

    Article  Google Scholar 

  20. Rölla, G., Löe, H., & Rindom Schiött, C. (1970). The affinity of chlorhexidine for hydroxyapatite and salivary mucins. Journal of Periodontal Research, 5(2), 90–95.

    Article  Google Scholar 

  21. Rölla, G., Löe, H., & Schiøtt, C. R. (1971). Retention of chlorhexidine in the human oral cavity. Archives of Oral Biology, 16(9), 1109–1133.

    Article  Google Scholar 

  22. Stabholz, A., Kettering, J., Aprecio, R., Zimmerman, G., Baker, P. J., & Wikesjö, U. M. (1993). Antimicrobial properties of human dentin impregnated with tetracycline HCl or chlorhexidine. Journal of Clinical Periodontology, 20(8), 557–562.

    Article  Google Scholar 

  23. Kranendonk, A., Van der Reijden, W., Van Winkelhoff, A., & Van der Weijden, G. (2010). The bactericidal effect of a Genius® Nd:YAG laser. International Journal of Dental Hygiene, 8(1), 63–67.

    Article  Google Scholar 

  24. Kreisler, M., Kohnen, W., Marinello, C., Götz, H., Duschner, H., Jansen, B., et al. (2002). Bactericidal effect of the Er:YAG laser on dental implant surfaces: An in vitro study. Journal of Periodontology, 73(11), 1292–1298.

    Article  Google Scholar 

  25. Romanos, G. E., Everts, H., & Nentwig, G. H. (2000). Effects of diode and Nd:YAG laser irradiation on titanium discs: A scanning electron microscope examination. Journal of Periodontology, 71(5), 810–815.

    Article  Google Scholar 

  26. Stubinger, S., Etter, C., Miskiewicz, M., Homann, F., Saldamli, B., Wieland, M., et al. (2010). Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. International Journal of Oral and Maxillofacial Implants, 25(1), 104–111.

    Google Scholar 

  27. Block, C. M., Mayo, J. A., & Evans, G. H. (1992). Effects of the Nd:YAG dental laser on plasma-sprayed and hydroxyapatite-coated titanium dental implants: Surface alteration and attempted sterilization. International Journal of Oral and Maxillofacial Implants, 7(4), 441–449.

    Google Scholar 

  28. Çağavi, F., Akalan, N., Celik, H., Gür, D., & Güçiz, B. (2004). Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochirurgica, 146(6), 603–610.

    Article  Google Scholar 

  29. Bailey, G., Gardner, J., Day, M., & Kovanda, B. (1998). Implant surface alterations from a nonmetallic ultrasonic tip. The Journal of the Western Society of Periodontology/Periodontal Abstracts, 46(3), 69–73.

    Google Scholar 

  30. Sato, S., Kishida, M., & Ito, K. (2004). The comparative effect of ultrasonic scalers on titanium surfaces: An in vitro study. Journal of Periodontology, 75(9), 1269–1273.

    Article  Google Scholar 

  31. Quirynen, M., Van der Mei, H., Bollen, C., Schotte, A., Marechal, M., Doornbusch, G., et al. (1993). An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. Journal of Dental Research, 72(9), 1304–1309.

    Article  Google Scholar 

  32. Gantes, B., & Nilveus, R. (1991). The effects of different hygiene instruments on titanium surfaces: SEM observations. The International Journal of Periodontics and Restorative Dentistry, 11(3), 225.

    Google Scholar 

  33. Rühling, A., Kocher, T., Kreusch, J., & Plagmann, H. C. (1994). Treatment of subgingival implant surfaces with Teflon®-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study. Clinical Oral Implants Research, 5(1), 19–29.

    Article  Google Scholar 

  34. Augthun, M., Tinschert, J., & Huber, A. (1998). In vitro studies on the effect of cleaning methods on different implant surfaces*. Journal of Periodontology, 69(8), 857–864.

    Article  Google Scholar 

  35. Fox, S. C., Moriarty, J. D., & Kusy, R. P. (1990). The effects of scaling a titanium implant surface with metal and plastic instruments: An in vitro study. Journal of Periodontology, 61(8), 485–490.

    Article  Google Scholar 

  36. He, H., Yu, J., Song, Y., Lu, S., Liu, H., & Liu, L. (2009). Thermal and morphological effects of the pulsed Nd:YAG laser on root canal surfaces. Photomedicine and Laser Surgery, 27(2), 235–240.

    Article  Google Scholar 

  37. Kivanç, B. H., Ulusoy, Ö. İ. A., & Görgül, G. (2008). Effects of Er:YAG laser and Nd:YAG laser treatment on the root canal dentin of human teeth: A SEM study. Lasers in Medical Science, 23(3), 247–252.

    Article  Google Scholar 

  38. Zhu, L., Tolba, M., Arola, D., Salloum, M., & Meza, F. (2009). Evaluation of effectiveness of Er, Cr:YSGG laser for root canal disinfection: Theoretical simulation of temperature elevations in root dentin. Journal of Biomechanical Engineering, 131(7), 071004.

    Article  Google Scholar 

  39. Kreisler, M., Al Haj, H., Götz, H., Duschner, H., & d’Hoedt, B. (2002). Effect of simulated CO2 and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers in Surgery and Medicine, 30(3), 233–239.

    Article  Google Scholar 

  40. Hayek, R. R., Araújo, N. S., Gioso, M. A., Ferreira, J., Baptista-Sobrinho, C. A., Yamada, A. M., Jr., et al. (2005). Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. Journal of Periodontology, 76(8), 1275–1281.

    Article  Google Scholar 

  41. Kozlovsky, A., Artzi, Z., Moses, O., Kamin-Belsky, N., & Greenstein, R. B.-N. (2006). Interaction of chlorhexidine with smooth and rough types of titanium surfaces. Journal of Periodontology, 77(7), 1194–1200.

    Article  Google Scholar 

  42. Nakazato, G., Tsuchiya, H., Sato, M., & Yamauchi, M. (1989). In vivo plaque formation on implant materials. International Journal of Oral and Maxillofacial Implants, 4(4), 321–326.

    Google Scholar 

  43. Åstrand, P., Engquist, B., Anzén, B., Bergendal, T., Hallman, M., Karlsson, U., et al. (2004). A three-year follow-up report of a comparative study of ITI Dental Implants® and Brånemark System® implants in the treatment of the partially edentulous maxilla. Clinical Implant Dentistry and Related Research, 6(3), 130–141.

    Article  Google Scholar 

  44. Quirynen, M., Bollen, C., Papaioannou, W., Van Eldere, J., & van Steenberghe, D. (1996). The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: Short-term observations. International Journal of Oral and Maxillofacial Implants, 11(2), 169–178.

    Google Scholar 

  45. Buergers, R., Rosentritt, M., & Handel, G. (2007). Bacterial adhesion of Streptococcus mutans to provisional fixed prosthodontic material. The Journal of Prosthetic Dentistry, 98(6), 461–469.

    Article  Google Scholar 

  46. Di Giulio, M., Traini, T., Sinjari, B., Nostro, A., Caputi, S., & Cellini, L. (2016). Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study. Clinical Oral Implants Research, 27(7), 918–925.

    Article  Google Scholar 

  47. Hauser-Gerspach, I., Mauth, C., Waltimo, T., Meyer, J., & Stübinger, S. (2014). Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers in Medical Science, 29, 1329–1337.

    Article  Google Scholar 

  48. Park, J. B., Jang, Y. J., Koh, M., Choi, B. K., Kim, K. K., & Ko, Y. (2013). In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. Journal of Periodontology, 84(8), 1191–1198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jen Chang.

Additional information

Nominzul Batsukh and Sheng Wei Feng made equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batsukh, N., Feng, S.W., Lee, W.F. et al. Effects of Porphyromonas gingivalis on Titanium Surface by Different Clinical Treatment. J. Med. Biol. Eng. 37, 35–44 (2017). https://doi.org/10.1007/s40846-016-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0194-0

Keywords

Navigation