Skip to main content
Log in

Design and Verification of Novel Low-Cost MR-Guided Small-Animal Stereotactic System

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Stereotactic systems have been used for decades to position surgical instruments in important preclinical and clinical studies. We developed and verified a low-cost magnetic-resonance-guided system for accurate preclinical stereotactic operations on small animals. The system consists of both commercially available and custom components, including in-house software written in MATLAB to register coordinate spaces. The software registers target the image-space coordinates from magnetic resonance imaging to the physical space through a rigid-body transform. The transform uses singular value decomposition to determine rotation and translation matrices that are optimal in a least squares sense. Needle positioning and core biopsy studies were performed to verify the accuracy of the system. The needle positioning study demonstrated a sub-millimeter positioning error of 0.294 ± 0.156 mm while using a 26 s gauge Hamilton needle. Biopsy studies demonstrated >94 % success in accessing sub-millimeter stereotactic targets embedded in agarose gel phantoms. These favorable results confirm that despite its relatively low hardware cost (US$18,730) and easy assembly, the system is able to consistently access stereotactic targets on the spatial scale of a small animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spiegel, E. A., Wycis, H. T., Marks, M., & Lee, A. J. (1947). Stereotaxic apparatus for operations on the human brain. Science, 106, 349–350.

    Article  Google Scholar 

  2. Jensen, R. L., Stone, J. L., & Hayne, R. A. (1996). Introduction of the human Horsley-Clarke stereotactic frame. Neurosurgery, 38, 563–567.

    Google Scholar 

  3. Lehman, R. M., & Augustine, J. R. (2013). Evolution and rebirth of functional stereotaxy in the subthalamus. World Neurosurgery, 80, 521–533.

    Article  Google Scholar 

  4. Van Essen, D. C. (2002). Windows on the brain: The emerging role of atlases and databases in neuroscience. Current Opinion in Neurobiology, 12, 574–579.

    Article  Google Scholar 

  5. Aggarwal, M., Zhang, J., Millter, M. I., Sidman, R. L., & Mori, S. (2009). Magnetic resonace imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotactic surgery. Neuroscience, 162, 1339–1350.

    Article  Google Scholar 

  6. MacKenzie-Graham, A., Jones, E. S., Shattuck, D. W., Dinov, I. D., Bota, M., & Toga, A. W. (2003). The informatics of a C57BL/6J mouse brain atlas. Neuroinformatics, 1, 397–410.

    Article  Google Scholar 

  7. Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N., & Henkelman, R. M. (2008). High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage, 42, 60–69.

    Article  Google Scholar 

  8. Dogdas, B., Stout, D., Chatziioannou, A. F., & Leahy, R. M. (2007). Digimouse: A 3D whole body mouse atlas from CT and cryosection data. Physics in Medicine & Biology, 52, 577–587.

    Article  Google Scholar 

  9. Meyer, C. R., Moffat, B. A., Kuszpit, K., Bland, P. L., Chenevert, T. L., Rehemtulla, A., et al. (2006). A methodology for registration of a histological slide and in vivo MRI volume based on optimizing mutual information. Molecular Imaging, 5, 16–23.

    Google Scholar 

  10. Singh, M., Rajagopalan, A., Kim, T.-S., Hwang, D., Chui, H., Zhang, X.-L., et al. (2008). Co-registration of in vivo human MRI brain images to postmortem histological microscopic images. International Journal of Imaging Systems and Technology, 18, 325–335.

    Article  Google Scholar 

  11. Jacobs, M. A., Windham, J. P., Soltanian-Zadeh, H., Peck, D. J., & Knight, R. A. (1999). Registration and warping of magnetic resonance images to histological sections. Medical Physics, 26, 1568–1578.

    Article  Google Scholar 

  12. Yang, S., Yang, Z., Fischer, K., Zhong, K., Stadler, J., Godenschweger, F., et al. (2013). Integration of ultra-high field MRI and histology for connectome based research of brain disorders. Frontiers in Neuroanatomy, 7, 1–10.

    Article  Google Scholar 

  13. Spiegel, E. A., & Wycis, H. T. (1952). Stereoencephalotomy thalamotomy and related procedures. JAMA, 148, 446–451.

    Article  Google Scholar 

  14. Saunders, R. C., Aigner, T. G., & Frank, J. A. (1990). Magnetic resonance imaging of the rhesus monkey brain: Use for stereotactic neurosurgery. Experimental Brain Research, 81, 443–446.

    Article  Google Scholar 

  15. Chang, S. D., Main, W., Martin, D. P., Gibbs, I. C., & Heilbrun, M. P. (2003). An analysis of the accuracy of the CyberKnife: A robotic frameless stereotactic radiosurgical system. Neurosurgery, 52, 140–147.

    Google Scholar 

  16. Haidegger, T., Xia, T., & Kazanzides, P. (2008). Accuracy improvement of a neurosurgical robot system. In Proceedings of the 2nd biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (pp. 836–841).

  17. Yu, C., Apuzzo, M. L. J., Zee, C., & Petrovich, Z. (2001). A phantom study of the geometric accuracy of computed tomographic and magnetic resonance imaging stereotactic localization with the Leksell stereotactic system. Neurosurgery, 48, 1092–1099.

    Article  Google Scholar 

  18. Waspe, A. C., Cakiroglu, H. J., Lacefield, J. C., & Fenster, A. (2007). Design calibration and evaluation of a robotic needle-positioning system for small animal imaging applications. Physics in Medicine & Biology, 52, 1863–1878.

    Article  Google Scholar 

  19. Ayadi, A., Bour, G., Aprahamian, M., Bayle, B., Graebling, P., Gangloff, J., et al. (2007). Fully automated image-guided needle insertion: Application to small animal biopsies. In Proceedings of the 29th annual international conference of the IEEE EMBS (pp. 194–197).

  20. Haung, Y. H., Wu, T. H., Lin, M. H., Yang, C. C., Wang, T. C., Chen, C. L., et al. (2006). Automated image-guided robot arm system for small animal tissue biospy studies. In Proceedings of the 24th IASTED international multi-conference biomedical engineering (pp. 13–18).

  21. Li, J. C., Iordachita, I., Balogh, E., Fichtinger, G., & Kazanzides, P. (2005). Validation of an image-guided robot system for measurement, biopsy and injection in rodents. In Proceedings of the IEEE 31st annual northeast conference bioengineering (pp. 131–133).

  22. Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, 698–700.

    Article  Google Scholar 

  23. Eggert, D. W., Lorusso, A., & Fisher, R. B. (1997). Estimating 3-D rigid boy transformations: A comparison of four major algorithms. Machine Vision and Applications, 9, 272–290.

    Article  Google Scholar 

  24. Olamat, A. E., Nkemasong, N., Pohl, B. M., & Hofmann, U. G. (2010). Physical and FEM simulation of microprobe insertion into rat brain. In Exceprt from the proceedings of the COMSOL conference 2010.

  25. Allison, S. W., & Gillies, G. T. (2010). Fluorescence excitation and propagation through brain phantom gelatins: Measurements and potential applications. Measurement Science and Technology, 21, 085802.

    Article  Google Scholar 

  26. Pervin, F., & Chen, W. (2010). Mechanically similar gel simulants for brain tissues. Dynamic Behavior of Materials, 1, 9–13.

    Google Scholar 

  27. Ishikawa, R., Kato, K., Kubo, M., Uzuka, T., & Takahashi, H. (2006). Finite element analysis and experimental study on mechanism of brain injury using brain model. In Proceedings of the 28th IEEE EMBS annual international conference (pp. 1327–1330).

Download references

Acknowledgments

This work was supported by the National Science Foundation Graduate Research Fellowship Program under grant DGE-1311230 (JDP), by the National Institutes of Health (NIH) - National Institute of Neurological Disorders and Stroke (NINDS) NS082609 (LSH), by the Mayo Clinic Foundation (LSH), and by the ASU-Mayo Clinic Arizona Seed Grant Program (DHF and KMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Plasencia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plasencia, J.D., Hu, L.S., Turner, G.H. et al. Design and Verification of Novel Low-Cost MR-Guided Small-Animal Stereotactic System. J. Med. Biol. Eng. 36, 526–535 (2016). https://doi.org/10.1007/s40846-016-0153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0153-9

Keywords

Navigation