Skip to main content

Advertisement

Log in

Parasite and Infected-Erythrocyte Image Segmentation in Stained Blood Smears

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Identifying parasite species and their stage is very important in scrutinizing the properties of malaria, and preventing as well as diagnosing it. Unfortunately, it is a labor-intensive and time-consuming task. Moreover, the diagnosis accuracy heavily depends on the experience and skill of the technician, whose training is expensive. Developing a computer-aided system is thus necessary for identifying parasite species and their stage for malaria diagnosis. Extracting the infected erythrocytes and parasites from a blood smear image is essential for such as system. The present study proposes an automatic malaria parasite detector for segmenting parasites and malaria-infected erythrocytes from a blood smear image. This detector can objectively and efficiently help a doctor diagnose malaria. Experimental results show that the proposed detector performs well in segmenting parasites and malaria-infected erythrocytes from a blood smear image taken under a microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Health Organization. (2014). World Malaria Report 2014. Geneva: World Health Organization.

    Google Scholar 

  2. Trampuz, A., Jereb, M., Muzlovic, I., & Prabhu, R. M. (2003). Clinical review: Severe malaria. Critical Care, 7, 315–323.

    Article  Google Scholar 

  3. Zhou, Z., Wu, S., Chang, K. J., Chen, W. R., Chen, Y. S., Kuo, W. H., et al. (2015). Classification of benign and malignant breast tumors in ultrasound images with posterior acoustic shadowing using half-contour features. Journal of Medical and Biological Engineering, 35, 178–187.

    Article  Google Scholar 

  4. Chiodini, P. L., Moody, A. H., & Manser, D. W. (2001). Atlas of medical helminthology and protozoology (4th ed.). New York: Edinburgh, Churchill Livingstone.

    Google Scholar 

  5. Cross, C. (2004). Malaria control measure, November 2004. http://malaria.wellcome.ac.uk/doc_WTD023987.html.

  6. Gelasca, E. D., Byun, J., Obara, B., & Manjunath, B. S. (2008). Evaluation and benchmark for biological image segmentation. In 15th IEEE international conference on image processing, San Diego, CA (pp. 1816–1819).

  7. Le, M. T., Bretschneider, T. R., Kuss, C., & Preiser, P. R. (2008). A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in giemsa-stained thin blood smears. BMC Cell Biology, 9, 15.

    Article  Google Scholar 

  8. Payne, D. (1988). Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bulletin of the World Health Organization, 66(5), 621–626.

    Google Scholar 

  9. Ross, N. E., Pritchard, C. J., Rubin, D. M., & Dusé, A. G. (2006). Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Medical & Biological Engineering & Computing, 44(5), 427–436.

    Article  Google Scholar 

  10. Ruberto, C. D., Dempster, A., Khan, S., & Jarra, B. (2002). Analysis of infected blood cell images using morphological operators. Image Vision Computing, 20(2), 133–146.

    Article  Google Scholar 

  11. Sio, S. W. S., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., et al. (2007). MalariaCount: An image analysis-based program for the accurate determination of parasitemia. Journal of Microbiology Methods, 68(1), 11–18.

    Article  Google Scholar 

  12. Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In P. Heckbert (Ed.), Graphics gems IV (pp. 474–485). New York: Academic Press.

    Chapter  Google Scholar 

  13. Case 206: Malaria falciparum. http://www.fujita-hu.ac.jp/~tsutsumi/case/case206.htm.

  14. Perez-Jorge, E. V., & Herchline, T. (2014). Malaria: eMedicine infectious diseases. http://emedicine.medscape.com/article/221134-overview.

  15. Hsu, W. Y., & Chen, K. W. (2014). Segmentation-based image compression using modified competitive network. Journal of Medical and Biological Engineering, 34(6), 542–546.

    MathSciNet  Google Scholar 

  16. Moody, A. H., & Chiodini, P. L. (2000). Methods for the detection of blood parasites. Clinical and Laboratory Haematology, 22(4), 189–201.

    Article  Google Scholar 

  17. Kumar, S., Ong, S. H., Ranganath, S., Ong, T. C., & Chew, F. T. (2006). A rule-based approach for robust clump splitting. Pattern Recognition, 39(6), 1088–1098.

    Article  MATH  Google Scholar 

  18. Anggraini, D., Nugroho, A. S., Pratama, C., Rozi, I. E., Iskandar, A. A., & Hartono, R. N. (2011). Automated status identification of microscopic images obtained from malaria thin blood smears. In International conference on electrical engineering and informatics, Bandung (pp. 1–6)

  19. Panchbhai, V. V., Damahe, L. B., Nagpure, A. V., & Chopkar, P. N. (2012). RBCs and parasites segmentation from thin smear blood cell images. International Journal of Image, Graphics and Signal Processing, 4(10), 54–60.

    Article  Google Scholar 

  20. Nasir, A. S. A., Mashor, M. Y., & Mohamed, Z. (2013). Color image segmentation approach for detection of malaria parasites using various color models and k-means clustering. WSEAS Transaction on Biology and Biomedicine, 1(10), 41–55.

    Google Scholar 

  21. Shi, Y. Q., & Sun, H. (2008). Image and video compression for multimedia engineering fundamentals, algorithms, standards (2nd ed.). Boca Raton: CRC Press-Taylor & Francis Group.

    Book  Google Scholar 

  22. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  23. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    Article  Google Scholar 

  24. Nixon, M. S., & Aguado, A. S. (2002). Feature extraction and image processing (1st ed.). Oxford: Newnes.

    Google Scholar 

  25. Carlone, P., Palazzo, G. S., & Pasquino, R. (2007). Pultrusion manufacturing process development: cure optimization by hybrid computational methods. Computers & Mathematics with Applications, 53, 1464–1471.

    Article  Google Scholar 

  26. Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–165.

    Article  Google Scholar 

Download references

Author's contributions

YKC and KCT conceived the study. YKC designed the approach and performed the computational analysis with YWH, CLW, CMW, LYT, CWL, and KCT. YKC and KCT supervised the work and tested the program. YWH, CMW, LYT, and CWL wrote the manuscript. KCT prepared the samples and collected the data together with YWH and CLW. YKC and KCT contributed analyzing experimental studies. All authors read and approved the final manuscript. YKC and KCT contributed equally and are the correspondent authors as well as listed in alphabetical order.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Kuan Chan or Kwong-Chung Tung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, YW., Wang, CL., Wang, CM. et al. Parasite and Infected-Erythrocyte Image Segmentation in Stained Blood Smears. J. Med. Biol. Eng. 35, 803–815 (2015). https://doi.org/10.1007/s40846-015-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0101-0

Keywords

Navigation