Skip to main content
Log in

First-principles predictions of new superhard magnetic clathrate material β-C3N2 through atom embeddedness

基于第一性原理的β-C3N2笼中原子嵌入引起的超硬 磁性新材料设计

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Using first-principles calculations, we predict the coexistence of mechanical superhardness and the controllable magnetism in the clathrate material β-C3N2 through the implant of the external atom into the intrinsic cage structure. Taking hydrogen-doping (H@β-C3N2) and fluorine-doping (F@β-C3N2) as examples, our calculations indicate these two doped configurations are stable and discover that they belong to antiferromagnetic semiconductor and ferromagnetic semi-metal, respectively. These intriguing magnetic phase transitions originate from their distinctive band structures around the Fermi level and can be well understood by the three-dimensional Hubbard model with half-filling occupation and the Stoner model. Moreover, the high Vickers hardness of 49.0 GPa for H@β-C3N2 and 48.2 GPa for F@β-C3N2 are obtained, suggesting they are clathrate superhard materials as their host. Therefore, the incorporations of H and F in β-C3N2 give rise to new types of superhard antiferromagnetic semiconductor and superhard ferromagnetic semimetal, respectively, which could have potential applications in harsh conditions. Our work provides an effective strategy to design a new class of highly desirable multifunctional materials with excellent mechanical properties and magnetic properties, which may arouse spintronic applications in superhard materials in the future.

摘要

基于第一性原理计算, 我们通过将客体原子嵌入β-C3N2笼状结构 的内在空腔中, 预测了机械超硬和可控磁性的共存. 以氢掺杂(H@β-C3N2)和氟掺杂(F@β-C3N2)为例, 我们的研究表明两种掺杂构型是稳定 的, 并发现它们分别属于反铁磁半导体和铁磁半金属. 这些有趣的磁相 变源于它们在费米能级周围独特的能带结构, 并可通过具有半填充占 据的3D Hubbard模型和Stoner模型很好地解释. 此外, H@β-C3N2和 F@β-C3N2的高维氏硬度(49.0和48.2 GPa)表明它们具有笼状超硬材料 特征. 因此, 氢和氟在β-C3N2笼中的掺杂分别产生了一种新型的超硬反 铁磁半导体和超硬铁磁半金属, 这些材料在极端条件下具有潜在的应 用前景. 我们的工作为设计具有优异机械性能和磁性的新型高性能多 功能材料提供了一种有效的策略, 这可能会为超硬材料未来在自旋电 子学的应用提供理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolyniuk JA, Owens-Baird B, Wang J, et al. Clathrate thermoelectrics. Mater Sci Eng-R-Rep, 2016, 108: 1–46

    Article  Google Scholar 

  2. Ma L, Yang X, Liu G, et al. Design and synthesis of clathrate LaB8 with superconductivity. Phys Rev B, 2021, 104: 174112

    Article  CAS  Google Scholar 

  3. Somayazulu M, Ahart M, Mishra AK, et al. Evidence for superconductivity above 260 K in lanthanum duperhydride at megabar pressures. Phys Rev Lett, 2019, 122: 027001

    Article  CAS  PubMed  Google Scholar 

  4. Liu L, Wang C, Yi S, et al. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys Rev B, 2019, 99: 140501

    Article  CAS  Google Scholar 

  5. Ma L, Wang K, Xie Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys Rev Lett, 2022, 128: 167001

    Article  CAS  PubMed  Google Scholar 

  6. Prokofiev A, Sidorenko A, Hradil K, et al. Thermopower enhancement by encapsulating cerium in clathrate cages. Nat Mater, 2013, 12: 1096–1101

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Brorsson J, Qiu R, et al. Enhanced Thermoelectric Performance of Ba8 Ga16 Ge30 Clathrate by Modulation Doping and Improved Carrier Mobility. Adv Elect Mater, 2021, 7: 2000782

    Article  CAS  Google Scholar 

  8. Zhu L, Strobel TA, Cohen RE. Prediction of an extended ferroelectric clathrate. Phys Rev Lett, 2020, 125: 127601

    Article  CAS  PubMed  Google Scholar 

  9. Veprek S, Zeer A, Riedel R. Handbook of ceramic hard materials. Weinheim: Wiley-VCH, 2000. https://doi.org/10.1002/9783527618217

    Google Scholar 

  10. Wei Q, Zhang Q, Yan H, et al. A new superhard carbon allotrope: tetragonal C64. J Mater Sci, 2017, 52: 2385–2391

    Article  CAS  Google Scholar 

  11. Li Z, Hu M, Ma M, et al. Superhard superstrong carbon clathrate. Carbon, 2016, 105: 151–155

    Article  CAS  Google Scholar 

  12. Cui Z, Zhang X, Sun Y, et al. Prediction of novel boron-carbon based clathrates. Phys Chem Chem Phys, 2022, 24: 16884–16890

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Hao J, Liu H, et al. High-energy density and superhard nitrogen-rich B-N compounds. Phys Rev Lett, 2015, 115: 105502

    Article  PubMed  Google Scholar 

  14. Li X, Yong X, Wu M, et al. Hard BN clathrate superconductors. J Phys Chem Lett, 2019, 10: 2554–2560

    Article  CAS  PubMed  Google Scholar 

  15. Gou H, Dubrovinskaia N, Bykova E, et al. Discovery of a superhard iron tetraboride superconductor. Phys Rev Lett, 2013, 111: 157002

    Article  PubMed  Google Scholar 

  16. Zhou F, Liu Y, Wang J, et al. Intersecting topological nodal ring and nodal wall states in superhard superconductor FeB4. Phys Rev Mater, 2021, 5: 074201

    Article  CAS  Google Scholar 

  17. Li S, Zhang J, Wang J, et al. Dense as diamond: Pn-C10, a superhard sp 3 carbon allotrope. Appl Phys Lett, 2021, 118: 012107

    Article  CAS  Google Scholar 

  18. Dai J, Tian Z. Large thermal conductivity of boron suboxides despite complex structures. Appl Phys Lett, 2021, 118: 041901

    Article  CAS  Google Scholar 

  19. Liang Y, Zhang X, Xu M, et al. Superconductivity in clathrate LiLaB8 with nontrivial band topology. Mater Today Phys, 2022, 27: 100817

    Article  CAS  Google Scholar 

  20. Qian Y, Wu H. D-C4N3: a superhard ferromagnetic half-metal predicted by first-principles study. Phys Lett A, 2022, 423: 127814

    Article  CAS  Google Scholar 

  21. Jiang X, Zhao J. Evolution of boron clusters in iron tetraborides under high pressure: semiconducting and ferromagnetic superhard materials. RSC Adv, 2015, 5: 48012–48023

    Article  CAS  Google Scholar 

  22. Ma S, Farla R, Bao K, et al. An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high Vickers hardness. Nanoscale, 2021, 13: 18570–18577

    Article  CAS  PubMed  Google Scholar 

  23. Zhao X, Li L, Bao K, et al. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2 B. Phys Chem Chem Phys, 2020, 22: 27425–27432

    Article  CAS  PubMed  Google Scholar 

  24. Manyali GS. Ab initio study of structural properties and dynamical stability of C3N2 encapsulating H guest atom. 2021, doi:https://doi.org/10.48550/arXiv.2110.12524

  25. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  27. Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater, 2015, 108: 1–5

    Article  CAS  Google Scholar 

  28. Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B, 1997, 55: 10355–10368

    Article  CAS  Google Scholar 

  29. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A, 1952, 65: 349–354

    Article  Google Scholar 

  30. Di Cataldo S, Qulaghasi S, Bachelet GB, et al. High-Tc superconductivity in doped boron-carbon clathrates. Phys Rev B, 2022, 105: 064516

    Article  CAS  Google Scholar 

  31. Dopilka A, Ovchinnikov A, Childs A, et al. Understanding the Li and Na intercalation in Si clathrate frameworks. Meet Abstr, 2021, MA2021-02: 226

    Article  Google Scholar 

  32. Rey N, Muñoz A, Rodríguez-Hernández P, et al. First-principles study of lithium-doped carbon clathrates under pressure. J Phys-Condens Matter, 2008, 20: 215218

    Article  Google Scholar 

  33. Kakehashi Y, Hasegawa H. Magnetic phase diagram of the half-filled Hubbard model for a simple cubic lattice. Phys Rev B, 1987, 36: 4066–4069

    Article  CAS  Google Scholar 

  34. Brandow BH. Electronic structure of Mott insulators. Adv Phys, 1977, 26: 651

    Article  CAS  Google Scholar 

  35. Majumdar K, Datta T. Zero temperature phases of the frustrated J 1–J 2 antiferromagnetic Spin-1/2 Heisenberg model on a simple cubic lattice. J Stat Phys, 2010, 139: 714–726

    Article  CAS  Google Scholar 

  36. Li M, Wang Q, Wang G, et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat Commun, 2021, 12: 3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laubach M, Joshi DG, Reuther J, et al. Quantum disordered insulating phase in the frustrated cubic-lattice Hubbard model. Phys Rev B, 2016, 93: 041106

    Article  Google Scholar 

  38. Motta M, Genovese C, Ma F, et al. Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases. Phys Rev X, 2020, 10: 031058

    CAS  Google Scholar 

  39. Stoner E C. Collective electron ferronmagnetism. Proc R Soc Lond A, 1938, 165: 372–414

    Article  Google Scholar 

  40. Cao T, Li Z, Louie SG. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys Rev Lett, 2015, 114: 236602

    Article  PubMed  Google Scholar 

  41. Mouhat F, Coudert FX. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B, 2014, 90: 224104

    Article  Google Scholar 

  42. Chen XQ, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19: 1275–1281

    Article  CAS  Google Scholar 

  43. Pugh S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Mag J Sci, 1954, 45: 823–843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12204330) and Sichuan Normal University for financial support (341829001).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chang J conceived this research. Sun L performed the investigation and the corresponding calculations. Fu B and Chang J contributed to the theoretical analysis. All authors contributed to the general discussion.

Corresponding author

Correspondence to Jing Chang  (常景).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Liping Sun is a master student at the School of Physics and Electronic Engineering, Sichuan Normal University. Her research interests mainly focus on the DFT calculations regarding superhard and magnetic materials and their applications.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Fu, B. & Chang, J. First-principles predictions of new superhard magnetic clathrate material β-C3N2 through atom embeddedness. Sci. China Mater. (2024). https://doi.org/10.1007/s40843-024-2916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40843-024-2916-5

Keywords

Navigation