Skip to main content
Log in

Optical properties of Sr2LuNbO6:Mn4+ deep-red phosphor: crystal-field splitting and multimode vibrational coupling

Sr2LuNbO6:Mn4+深红荧光粉的光学性质: 晶体场劈裂 和多模振动耦合

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In this study, the optical properties of Sr2LuNbO6:Mn4+ deep-red phosphor synthesized with a molten salt solid-phase method were investigated in detail by using photoluminescence (PL), PL excitation (PLE), time-resolved PL, and Raman spectroscopic techniques. At room temperature, the PL spectra of the phosphor sample show a stepped shape. At cryogenic temperatures, however, the measured PL spectra are featured by two sets of multi-mode vibronic luminescence lines. Based on the variable-temperature PL spectra and Raman spectra, the dual zero-phonon lines and the two sets of multimode vibronic lines with a constant energy separation of ∼2.8 meV are identified. This study leads to the unprecedented determination of the splitting energy of the 2Eg excited-state and the confirmation of multiple vibrational modes involved within the vibronic luminescence.

摘要

本研究利用光致发光(PL)、光致发光激发(PLE)、时间分辨PL和 拉曼光谱技术等, 详细研究了通过熔盐固相法合成的Sr2LuNbO6: Mn4+深红荧光粉的光学性质. 在室温下, 样品的PL光谱呈现出阶梯状 谱形. 然而, 在低温下, 测量的PL光谱由两组多模振动电子发光谱线组 成. 基于变温PL光谱和拉曼光谱, 我们识别出双零声子谱线以及两组恒 定能量间隔为~2.8 meV的多模声子伴线. 这项研究首次发现Mn4+离子 的2Eg激发态能级在氧化物八面体晶格中具有~2.8 meV能量差的劈裂, 并证实多种振动模式深度参与Mn4+离子的振动电子发光.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liaros S, Botsis K, Xydis G. Technoeconomic evaluation of urban plant factories: The case of basil (Ocimum basilicum). Sci Total Environ, 2016, 554–555: 218–227

    Article  PubMed  ADS  Google Scholar 

  2. Nakamura S, Krames MR. History of gallium–nitride-based light-emitting diodes for illumination. Proc IEEE, 2013, 101: 2211–2220

    Article  CAS  Google Scholar 

  3. Singh D, Basu C, Meinhardt-Wollweber M, et al. LEDs for energy efficient greenhouse lighting. Renew Sustain Energy Rev, 2015, 49: 139–147

    Article  CAS  Google Scholar 

  4. de Wit M, Galvão VC, Fankhauser C. Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol, 2016, 67: 513–537

    Article  CAS  PubMed  Google Scholar 

  5. Quail PH. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93

    Article  CAS  PubMed  Google Scholar 

  6. Yang Z, Zhao Y, Zhou Y, et al. Giant red-shifted emission in (Sr,Ba)Y2O4:Eu2+ phosphor toward broadband near-infrared luminescence. Adv Funct Mater, 2021, 32: 2103927

    Article  Google Scholar 

  7. Li G, Tian Y, Zhao Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem Soc Rev, 2015, 44: 8688–8713

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Lin H, Xu J, et al. CaMg2Al16O27:Mn4+-based red phosphor: A potential color converter for high-powered warm W-LED. ACS Appl Mater Interfaces, 2014, 6: 22905–22913

    Article  CAS  PubMed  Google Scholar 

  9. Tang F, Su Z, Ye H, et al. A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+ A = K, Na, B = Si, Ge, Ti): Synthesis below 0°C and efficient room-temperature photoluminescence. J Mater Chem C, 2016, 4: 9561–9568

    Article  CAS  Google Scholar 

  10. Wu J, Li Z, Luo L, et al. A facile two-step synthesis of an efficient narrow-band red-emitting K2NbF7:Mn4+ phosphor for warm white LEDs and its thermal quenching behavior. J Alloys Compd, 2021, 863: 158058

    Article  CAS  Google Scholar 

  11. Wang Z, Ji H, Zhang Z, et al. Solution growth of millimeter-scale Na2SiF6 single crystals for Mn4+-doping as red phosphor. J Am Ceram Soc, 2021, 104: 5077–5085

    Article  CAS  Google Scholar 

  12. Senden T, van Dijk-Moes RJA, Meijerink A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light Sci Appl, 2018, 7: 8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Yu C, Song E, et al. Three birds with one stone: K2SiF6:Mn4+ single crystal phosphors for high-power and laser-driven lighting. Adv Opt Mater, 2020, 8: 2000976

    Article  CAS  Google Scholar 

  14. Fang S, Lang T, Han T, et al. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons’ traps. Chem Eng J, 2020, 389: 124297

    Article  CAS  Google Scholar 

  15. Dhoble SJ, Priya R, Dhoble NS, et al. Short review on recent progress in Mn4+-activated oxide phosphors for indoor plant light-emitting diodes. Luminescence, 2021, 36: 560–575

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Wang S, Devakumar B. Optical properties of deep-redemitting Ca2YTaO6:Mn4+ phosphors for LEDs applications. Optics Laser Tech, 2020, 130: 106349

    Article  CAS  Google Scholar 

  17. Xia W, Cheng H, Mao Q, et al. Improving the luminescence performance of far-red-emitting Sr2ScSbO6:Mn4+ phosphor with charge compensation and its application in plant growth LEDs. Ceramics Int, 2023, 49: 13708–13716

    Article  CAS  Google Scholar 

  18. Brik MG, Srivastava AM. Luminescent Materials: Fundamentals and Applications. Berlin/Boston: Walter de Gruyter GmbH & Co KG, 2023. Chap. 8

    Book  Google Scholar 

  19. Adachi S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review. J Lumin, 2018, 202: 263–281

    Article  CAS  Google Scholar 

  20. Adachi S. Review—Mn4+-activated red and deep red-emitting phosphors. ECS J Solid State Sci Technol, 2020, 9: 016001

    Article  CAS  ADS  Google Scholar 

  21. Chen T, Yang X, Xia W, et al. Deep-red emission of Mn4+ and Cr3+ in (Li1−xAx)2MgTiO4 (A = Na and K) phosphor: Potential application as W-LED and compact spectrometer. Ceramics Int, 2017, 43: 6949–6954

    Article  CAS  Google Scholar 

  22. Yang C, Zhang Z, Hu G, et al. A novel deep red phosphor Ca14Zn6-Ga10O35:Mn4+ as color converter for warm W-LEDs: Structure and luminescence properties. J Alloys Compd, 2017, 694: 1201–1208

    Article  CAS  Google Scholar 

  23. Adachi S. Review—Temperature dependence of luminescence intensity and decay time in Mn4+-activated oxide phosphors. ECS J Solid State Sci Technol, 2022, 11: 056003

    Article  CAS  ADS  Google Scholar 

  24. Chen Z, Du S, Zhu K, et al. Mn4+-activated double-perovskite-type Sr2LuNbO6 multifunctional phosphor for optical probing and lighting. ACS Appl Mater Interfaces, 2023, 15: 28193–28203

    Article  CAS  PubMed  Google Scholar 

  25. Gao M, Pan Y, Jin Y, et al. A review on the structural dependent optical properties and energy transfer of Mn4+ and multiple ion-codoped complex oxide phosphors. RSC Adv, 2020, 11: 760–779

    Article  PubMed  ADS  Google Scholar 

  26. Zhou Q, Dolgov L, Srivastava AM, et al. Mn2+ and Mn4+ red phosphors: Synthesis, luminescence and applications in WLEDs. A review. J Mater Chem C, 2018, 6: 2652–2671

    Article  CAS  Google Scholar 

  27. Cao R, Ceng X, Huang J, et al. Synthesis and luminescence properties of double perovskite Sr2ZnMoO6:Mn4+ deep red phosphor. Optical Mater, 2016, 62: 706–710

    Article  CAS  ADS  Google Scholar 

  28. Cao R, Wang W, Zhang J, et al. Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting. J Alloys Compd, 2017, 704: 124–130

    Article  CAS  Google Scholar 

  29. Yun X, Zhou J, Zhu Y, et al. A potentially multifunctional double-perovskite Sr2ScTaO6:Mn4+,Eu3+ phosphor for optical temperature sensing and indoor plant growth lighting. J Lumin, 2022, 244: 118724

    Article  CAS  Google Scholar 

  30. Xie J, Cao Q, Li L, et al. A double-perovskite Mn4+-doped Sr2ScNbO6 phosphor for indoor plant growth lighting. Optical Mater, 2023, 143: 114212

    Article  CAS  Google Scholar 

  31. Liu X, Xu Y, Cheng K, et al. A novel Mn4+-activated far-red Sr2MgWO6 phosphor: Synthesis, luminescence enhancement, and application prospect. Luminescence, 2023, 38: 692–701

    Article  CAS  PubMed  Google Scholar 

  32. Hua Y, Li H, Wang T, et al. Customization of novel double-perovskite (Ca,Sr)2InNbO6:Mn4+ red-emitting phosphors for luminescence life-time thermometers with good relative sensing sensitivity. J Alloys Compd, 2022, 925: 166498

    Article  CAS  Google Scholar 

  33. Long J, Xu Y, Cheng K, et al. A novel multifunctional double perovskite structure phosphor La2MgTiO6:Mn4+,Eu3+. Optical Mater, 2023, 141: 113967

    Article  CAS  Google Scholar 

  34. Qin L, Bi S, Cai P, et al. Preparation, characterization and luminescent properties of red-emitting phosphor: LiLa2NbO6 doped with Mn4+ ions. J Alloys Compd, 2018, 755: 61–66

    Article  CAS  Google Scholar 

  35. Hasegawa T, Kim SW, Abe T, et al. Improvement of emission intensity for near-infrared-emitting Ca14Zn6Al10O35:Mn4+ phosphor by oxygen-pressure method. Chem Lett, 2016, 45: 1096–1098

    Article  CAS  Google Scholar 

  36. Ji H, Ueda J, Brik MG, et al. Intense deep-red zero phonon line emission of Mn4+ in double perovskite La4Ti3O12. Phys Chem Chem Phys, 2019, 21: 25108–25117

    Article  CAS  PubMed  Google Scholar 

  37. Böhnisch D, Jansen T, Pöttgen R, et al. Temperature dependent optical properties of red emitting Na3GaF6:Mn4+ as a color converter for warm white LEDs. Z für Kristallographie-Crystalline Mater, 2018, 233: 489–499

    Article  Google Scholar 

  38. Zhu H, Lin CC, Luo W, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun, 2014, 5: 4312

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Zhang D, Ye W, Cao X, et al. High-excited-state splitting and multimode vibrational coupling in Mn4+-activated fluoride phosphor. Sci China-Phys Mech Astron, 2024, 67: 234212

    Article  CAS  ADS  Google Scholar 

  40. Zhang D, Zhou J, Cao X, et al. Manipulation of temperature-dependent luminescence behaviors of Mn4+-activated fluoride phosphors. J Phys Chem Lett, 2023, 14: 6464–6469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (12074324 and 11374247) and the Science, Technology, and Innovation Commission of Shenzhen Municipality (JCJY20180508163404043 and JCYJ20170818141709893).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhou G and Tang F designed and synthesized the samples; Zhou G and Zhang D conducted the optical spectroscopic measurements; Zhou G, Ning J and Xu S analyzed the spectroscopic data; Zhou G and Zheng C performed the low-temperature Raman scattering measurements; Zhou G and Xu S wrote and edited the paper. Xu S supervised the study. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Fei Tang  (唐飞), Jiqiang Ning  (宁吉强) or Shijie Xu  (徐士杰).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Guanghan Zhou received his BE degree in electronic science and technology from Shandong University (2021). He is currently a Master’s student at the Department of Optics and Engineering, Fudan University under the supervision of Prof. Shijie Xu. His research topic focuses on Mn4+-ion luminescence in oxide phosphors.

Shijie Xu earned his BE degree from the Department of Automatic Engineering, Hebei Institute of Technology in 1984, both ME and PhD degrees from the Department of Electronic Engineering, Xi’an Jiaotong University in 1989 and 1993, respectively. He is currently a CJ Chair professor at the Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University. Prior to joining Fudan University, he was a tenured professor at the Department of Physics, The University of Hong Kong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zhang, D., Tang, F. et al. Optical properties of Sr2LuNbO6:Mn4+ deep-red phosphor: crystal-field splitting and multimode vibrational coupling. Sci. China Mater. 67, 939–945 (2024). https://doi.org/10.1007/s40843-023-2782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2782-6

Keywords

Navigation