Skip to main content
Log in

Flame-retardant electrolyte with boosted interfacial stability for practical Li metal batteries

具有增强界面稳定性的阻燃型电解液用于实际锂金属电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Developing Li metal batteries (LMBs) with high-voltage cathodes is crucial for realizing high energy storage systems. Thus, advanced electrolytes that can derive stable interphases for both Li anode and high-voltage cathodes are highly desired. LiNO3 has been widely used as an efficient additive for solid electrolyte interphases in ether-based electrolytes, but its poor solubility in carbonate-based electrolytes limits its application in high-voltage LMBs. Herein, trimethyl phosphate was proposed as co-solvent in ethyl methyl carbonate/fluoroethylene carbonate electrolyte to endow the electrolyte with high LiNO3 solubility and flame-retardant properties. Additionally, lithium bis(oxalato) borate was added to improve the interfacial stability at both the anode and the cathode sides. As a result, the obtained electrolyte exhibited high compatibility towards both Li metal anode and high-voltage layered cathodes. After cycled between 2.8–4.3 V at a current density of 1.2 mA cm−2 for 300 times, Li∣LiCoO2 and Li∣LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells delivered high capacity retention of 80.2% and 84.2%, respectively. More amazingly, the Li∥NCM811 cell with a negative-to-positive capacity ratio of 3.33 still remained a capacity retention of ∼80% after 150 cycles under the same charge/discharge conditions. The understanding of this fire-retardant, high-voltage electrolyte enriched with LiNO3 inspires the development of safe and high energy LMBs through interphases regulation.

摘要

开发匹配高电压正极的锂金属电池是实现高能量存储系统的关键. 因此, 研发可以同时为锂金属负极和高电压正极产生稳定界面相的先进电解液非常必要. LiNO3作为高效的固体电解质界面相添加剂被广泛应用于醚基电解液中, 然而其在碳酸脂类电解液中的低溶解性严重限制了其在高压锂金属电池中的应用. 本文利用磷酸三甲酯助溶剂提高LiNO3在碳酸乙基甲酯/氟代碳酸乙烯酯电解液中的溶解度, 并赋予电解液阻燃性能. 此外, 通过添加双草酸硼酸锂(LiBOB)进一步提高正负极的界面稳定性. 结果表明, 该电解液对锂金属负极和高电压层状氧化物正极均具有较高的兼容性. 在2.8–4.3 V电压范围内, Li∣LiCoO2和Li∣LiNi0.8Co0.1Mn0.1O2 (NCM811)电池在1.2 mA cm−2电流密度下循环300周后的容量保持率分别为80.2%和84.2%. 更令人惊喜的是, 负/正极容量比为3.33的Li∣NCM811电池在相同的充放电条件下循环150周后的容量保持率仍高达∼80%. 本论文对富含LiNO3的阻燃型高压电解液的研究将为通过界面相调控研发安全的高比能锂金属电池提供理论指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech, 2017, 12: 194–206

    Article  ADS  CAS  Google Scholar 

  2. Liu DH, Bai Z, Li M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem Soc Rev, 2020, 49: 5407–5445

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y, Wang Y, Xu M, et al. Tracking pressure changes and morphology evolution of lithium metal anodes. Acta Physico Chim Sin, 2021, 0: 2110040–0

    Article  Google Scholar 

  4. Wu X, Dai Y, Li NW, et al. Recent progress in ionic liquid-based electrolytes for nonaqueous and aqueous metal batteries. eScience, 2023, 100173

  5. Li T, Zhang XQ, Shi P, et al. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule, 2019, 3: 2647–2661

    Article  CAS  Google Scholar 

  6. Zhang W, Liang H, Zhu K, et al. Three-dimensional macro-/mesoporous C-TiC nanocomposites for dendrite-free lithium metal anode. Acta Physico Chim Sin, 2021, 0: 2105024–0

    Article  Google Scholar 

  7. He Z, Chen Y, Huang F, et al. Fluorinated solvents for lithium metal batteries. Acta Physico Chim Sin, 2022, 0: 2205005–0

    Article  Google Scholar 

  8. Fu A, Lin J, Zhang Z, et al. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li//LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett, 2022, 7: 1364–1373

    Article  CAS  Google Scholar 

  9. Jiang M, Danilov DL, Eichel R, et al. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv Energy Mater, 2021, 11: 2103005

    Article  CAS  Google Scholar 

  10. Cheng H, Sun Q, Li L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett, 2022, 7: 490–513

    Article  ADS  CAS  Google Scholar 

  11. Wang Z, Zhang B. Weakly solvating electrolytes for next-generation lithium batteries: Design principles and recent advances. Energy Mater Devices, 2023, 1: 9370003

    Article  Google Scholar 

  12. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104: 4303–4418

    Article  CAS  PubMed  Google Scholar 

  13. Gao Y, Du X, Hou Z, et al. Unraveling the mechanical origin of stable solid electrolyte interphase. Joule, 2021, 5: 1860–1872

    Article  CAS  Google Scholar 

  14. Wang Y, Yang X, Zhang Z, et al. Electrolyte design for rechargeable anion shuttle batteries. eScience, 2022, 2: 573–590

    Article  Google Scholar 

  15. Kim S, Park SO, Lee MY, et al. Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Mater, 2022, 45: 1–13

    Article  CAS  Google Scholar 

  16. Piao Z, Xiao P, Luo R, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv Mater, 2022, 34: 2108400

    Article  CAS  Google Scholar 

  17. Li T, Zhang XQ, Yao N, et al. Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew Chem Int Ed, 2021, 60: 22683–22687

    Article  CAS  Google Scholar 

  18. Jie Y, Liu X, Lei Z, et al. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew Chem Int Ed, 2020, 59: 3505–3510

    Article  CAS  Google Scholar 

  19. Wang H, Zhang J, Zhang H, et al. Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Rep Phys Sci, 2022, 3: 100919

    Article  CAS  Google Scholar 

  20. Gauthier R, Hall DS, Taskovic T, et al. A joint DFT and experimental study of an imidazolidinone additive in lithium-ion cells. J Electrochem Soc, 2019, 166: A3707–A3715

    Article  CAS  Google Scholar 

  21. Wu B, Lochala J, Taverne T, et al. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy, 2017, 40: 34–41

    Article  Google Scholar 

  22. Chen W, Hu Y, Lv W, et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat Commun, 2019, 10: 4973

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy, 2020, 5: 561–568

    Article  ADS  CAS  Google Scholar 

  24. Wang Z, Qi F, Yin L, et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv Energy Mater, 2020, 10: 1903843

    Article  CAS  Google Scholar 

  25. Fang C, Li J, Zhang M, et al. Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572: 511–515

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wang H, Liu J, He J, et al. Pseudo-concentrated electrolytes for lithium metal batteries. eScience, 2022, 2: 557–565

    Article  Google Scholar 

  27. Jurng S, Brown ZL, Kim J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci, 2018, 11: 2600–2608

    Article  CAS  Google Scholar 

  28. Liu S, Ji X, Piao N, et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew Chem Int Ed, 2021, 60: 3661–3671

    Article  CAS  Google Scholar 

  29. Guo J, Yang Z, Yu Y, et al. Lithium–sulfur battery cathode enabled by lithium–nitrile interaction. J Am Chem Soc, 2013, 135: 763–767

    Article  CAS  PubMed  Google Scholar 

  30. Qin Y, Wang D, Liu M, et al. Improving the durability of lithium-metal anode via in situ constructed multilayer SEI. ACS Appl Mater Interfaces, 2021, 13: 49445–49452

    Article  CAS  PubMed  Google Scholar 

  31. Zheng H, Xiang H, Jiang F, et al. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater, 2020, 10: 2001440

    Article  CAS  Google Scholar 

  32. Wang Y, Wang Z, Zhao L, et al. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv Mater, 2021, 33: 2008133

    Article  CAS  Google Scholar 

  33. Shi P, Zheng H, Liang X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chem Commun, 2018, 54: 4453–4456

    Article  CAS  Google Scholar 

  34. Zhang D, Liu M, Ma J, et al. Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. Nat Commun, 2022, 13: 6966

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang W, Zhang J, Yang Q, et al. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Appl Mater Interfaces, 2020, 12: 22901–22909

    Article  CAS  PubMed  Google Scholar 

  36. Pham HQ, Mirolo M, Tarik M, et al. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater, 2020, 33: 216–229

    Article  Google Scholar 

  37. Lin Y, Xu M, Wu S, et al. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD). ACS Appl Mater Interfaces, 2018, 10: 16400–16409

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Lin F, Markus IM, Nordlund D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun, 2014, 5: 3529

    Article  ADS  PubMed  Google Scholar 

  39. Chen J, Xing L, Yang X, et al. Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive. Electrochim Acta, 2018, 290: 568–576

    Article  CAS  Google Scholar 

  40. Wang X, Wang S, Wang H, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv Mater, 2021, 33: 2007945

    Article  CAS  Google Scholar 

  41. Jamil S, Wang G, Yang L, et al. Suppressing H2–H3 phase transition in high Ni–low Co layered oxide cathode material by dual modification. J Mater Chem A, 2020, 8: 21306–21316

    Article  CAS  Google Scholar 

  42. Zhang S, Li S, Lu Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience, 2021, 1: 163–177

    Article  Google Scholar 

Download references

Acknowledgements

This work was support by GuangDong Basic and Applied Basic Research Foundation (2021A1515111008).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Kou X and Zhang J designed and performed the experiments, analyzed the data as well as wrote the original draft. Zhang J acquired the funding. Li C helped analyze the data. Li R conducted the theoretical calculations. Ruan T and Wang W validated the data analysis, supervised the project and revised the original draft. Wang W conceived the idea.

Corresponding authors

Correspondence to Tingting Ruan  (阮挺婷) or Wenhui Wang  (王文辉).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Wenhui Wang is an associate professor at Harbin Institute of Technology, Shenzhen. He received his Bachelor and PhD degrees from Harbin Institute of Technology and The Chinese University of Hong Kong, respectively. His research interests include Li/Na-ion batteries, seawater desalination, seawater Li mining, and advanced oxidation processes for wastewater treatment. He has published more than 60 peer review papers as (co-)first/corresponding author in Appl Catal B: Environ, Energy Storage Mater, Water Res, Sci China Mater, etc. He is the recipient of the Eco-environment Youth Science and Technology Award of Guangdong Environmental Science Society, Guangdong Environmental Protection Science and Technology Award, Shenzhen Science and Technology Progress Award, Nanoscale 2024 Emerging Investigators, etc.

Electronic Supplementary Material

40843_2023_2745_MOESM1_ESM.pdf

Supporting Information for Flame-retardant electrolyte with boosted interfacial stability for practical Li metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, X., Zhang, J., Li, C. et al. Flame-retardant electrolyte with boosted interfacial stability for practical Li metal batteries. Sci. China Mater. 67, 804–815 (2024). https://doi.org/10.1007/s40843-023-2745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2745-x

Keywords

Navigation