Skip to main content
Log in

Novel as-cast Ti-rich refractory complex concentrated alloys with superior tensile properties

具有优异拉伸性能的新型铸态富Ti难熔高熵合金

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Refractory complex concentrated alloys (RCCAs) have drawn particular attention for their high yield strength and superior softening resistance at high temperatures. However, poor room-temperature ductility and high density remain the main challenges for their processing and applications. Here, using inherent material characteristics as the alloy-design principles, three novel single-phase body-centered cubic structured Ti3Zr1.5Nb(1−x)MoxVAl0.25 (x = 0.1, 0.3, 0.5, marked as Mo0.1, Mo0.3, and Mo0.5, respectively) RCCAs with promising tensile ductility and relatively low density below 6 g cm−3 were developed by tailoring the Mo concentration. The introduction of Mo elements with high shear modulus promotes lattice distortion, contributing to enhanced lattice friction stress and yield strength. The Mo0.3 and Mo0.5 alloys exhibit tensile yield strengths exceeding 1100 MPa and high fracture elongation of over 15% in the as-cast state. Labusch’s model revealed that solid-solution strengthening induced by atomic size and shear modulus mismatch contributes most significantly to yield strength. Deformation microstructure observations uncovered that the formation of the kink bands, dense-dislocation walls, and Taylor lattices are highly effective in enhancing strain-hardening capacity due to their high density of dislocation boundaries, enabling the alloys to maintain high strength while yet ensuring enough ductility. This study provides new insights into the development of strong and ductile RCCAs with single-phase structures.

摘要

难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关 注. 然而, 室温延展性差和较高的密度目前仍然是其加工以及应用需要 面临的主要挑战. 本文利用材料的固有特性作为合金设计原则, 通过调 控Mo浓度, 制备了三种新型单相体心立方结构的Ti3Zr1.5Nb(1−x)−MoxVAl0.25 (x = 0.1, 0.3, 0.5, 标记为Mo0.1, Mo0.3和Mo0.5)合金, 这些 合金都具有良好的拉伸延展性和低于6 g cm−3的密度. 高剪切模量Mo 元素的引入促进了晶格畸变, 从而提高了合金中的晶格摩擦应力以及 屈服强度. 铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服 强度, 以及大于15%的断裂延伸率. Labusch模型计算结果表明, 原子尺 寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著. 通过 观察变形微观组织发现, 由于存在高密度的位错界面, 扭折带、位错壁 以及泰勒晶格的形成能有效提高合金的应变硬化能力, 使合金在展现 高强度的同时保持足够的延展性. 该研究为开发具有高强韧的单相难 熔高熵合金提供了新的见解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature, 2019, 575: 64–74

    Article  CAS  Google Scholar 

  2. Yang T, Zhao YL, Li WP, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science, 2020, 369: 427–432

    Article  CAS  Google Scholar 

  3. Ritchie RO. The conflicts between strength and toughness. Nat Mater, 2011, 10: 817–822

    Article  CAS  Google Scholar 

  4. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  CAS  Google Scholar 

  5. Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 534: 227–230

    Article  CAS  Google Scholar 

  6. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  7. Gorsse S, Miracle DB, Senkov ON. Mapping the world of complex concentrated alloys. Acta Mater, 2017, 135: 177–187

    Article  CAS  Google Scholar 

  8. Xiong W, Guo AXY, Zhan S, et al. Refractory high-entropy alloys: A focused review of preparation methods and properties. J Mater Sci Tech, 2023, 142: 196–215

    Article  CAS  Google Scholar 

  9. Zhou Y, Zeng S, Zhu Y, et al. Superior tensile properties of a novel as-cast non-equimolar Zr45Ti15Nb20Ta20 complex concentrated alloy. Mater Lett, 2022, 324: 132779

    Article  CAS  Google Scholar 

  10. Zeng S, Zhou Y, Li H, et al. Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAl (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys. J Mater Sci Tech, 2022, 130: 64–74

    Article  CAS  Google Scholar 

  11. Zeng S, Zhu Y, Li W, et al. A single-phase Ti3Zr1.5NbVAl0.25 refractory high entropy alloy with excellent combination of strength and toughness. Mater Lett, 2022, 323: 132548

    Article  CAS  Google Scholar 

  12. Senkov ON, Woodward C, Miracle DB. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM, 2014, 66: 2030–2042

    Article  CAS  Google Scholar 

  13. Yurchenko NY, Stepanov ND, Gridneva AO, et al. Effect of Cr and Zr on phase stability of refractory Al−Cr−Nb−Ti−V−Zr high-entropy alloys. J Alloys Compd, 2018, 757: 403–414

    Article  CAS  Google Scholar 

  14. Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706

    Article  CAS  Google Scholar 

  15. Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr−Nb−Ti−V−Zr system: Microstructure and phase analysis. Acta Mater, 2013, 61: 1545–1557

    Article  CAS  Google Scholar 

  16. Senkov ON, Senkova SV, Miracle DB, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr−Nb−Ti−V−Zr system. Mater Sci Eng-A, 2013, 565: 51–62

    Article  CAS  Google Scholar 

  17. Wu YD, Cai YH, Chen XH, et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater Des, 2015, 83: 651–660

    Article  CAS  Google Scholar 

  18. Zhang F, Xiang C, Han EH, et al. Effect of Nb content on microstructure and mechanical properties of Mo0.25V0.25Ti1.5Zr0.5Nbx high-entropy alloys. Acta Metall Sin (Engl Lett), 2022, 35: 1641–1652

    Article  CAS  Google Scholar 

  19. Zhang S, Ding X, Gao X, et al. Dual enhancement in strength and ductility of Ti−V−Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure. Int J Plast, 2023, 160: 103505

    Article  CAS  Google Scholar 

  20. Wang T, Jiang W, Wang X, et al. Microstructure and properties of Al0.5NbTi3VxZr2 refractory high entropy alloys combined with high strength and ductility. J Mater Res Tech, 2023, 24: 1733–1743

    Article  CAS  Google Scholar 

  21. Jiang W, Wang Y, Wang X, et al. Effect of Al on microstructure and mechanical properties of lightweight AlxNb0.5TiV2Zr0.5 refractory high entropy alloys. Mater Sci Eng-A, 2023, 865: 144628

    Article  CAS  Google Scholar 

  22. Chen Y, Xu Z, Wang M, et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties. Mater Sci Eng-A, 2020, 792: 139774

    Article  CAS  Google Scholar 

  23. Yao TT, Zhang YG, Yang L, et al. A metastable Ti−Zr−Nb−Al multi-principal-element alloy with high tensile strength and ductility Mater Sci Eng-A, 2022, 851: 143646

    Article  CAS  Google Scholar 

  24. Pang J, Zhang H, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength Mater Lett, 2021, 290: 129428

    Article  CAS  Google Scholar 

  25. Sohn SS, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv Mater, 2019, 31: 1807142

    Article  Google Scholar 

  26. Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater, 2020, 32: 2004029

    Article  CAS  Google Scholar 

  27. Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater, 2018, 160: 158–172

    Article  CAS  Google Scholar 

  28. Wang S, Wu D, She H, et al. Design of high-ductile medium entropy alloys for dental implants. Mater Sci Eng-C, 2020, 113: 110959

    Article  CAS  Google Scholar 

  29. Li W, Xiong K, Yang L, et al. An ambient ductile TiHfVNbTa refractory high-entropy alloy: Cold rolling, mechanical properties, lattice distortion, and first-principles prediction. Mater Sci Eng-A, 2022, 856: 144046

    Article  CAS  Google Scholar 

  30. Huang H, Wu Y, He J, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater, 2017, 29: 1701678

    Article  Google Scholar 

  31. An Z, Mao S, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater Horiz, 2021, 8: 948–955

    Article  CAS  Google Scholar 

  32. Huang W, Hou J, Wang X, et al. Excellent room-temperature tensile ductility in as-cast Ti37V15Nb22Hf23W3 refractory high entropy alloys. Intermetallics, 2022, 151: 107735

    Article  CAS  Google Scholar 

  33. Wei S, Kim SJ, Kang J, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat Mater, 2020, 19: 1175–1181

    Article  CAS  Google Scholar 

  34. Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater Sci Eng-A, 2016, 654: 30–38

    Article  CAS  Google Scholar 

  35. Senkov ON, Semiatin SL. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloys Compd, 2015, 649: 1110–1123

    Article  CAS  Google Scholar 

  36. Juan CC, Tsai MH, Tsai CW, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater Lett, 2016, 184: 200–203

    Article  CAS  Google Scholar 

  37. Chen S, Tseng KK, Tong Y, et al. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J Alloys Compd, 2019, 795: 19–26

    Article  CAS  Google Scholar 

  38. Wu Y, Si J, Lin D, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater Sci Eng-A, 2018, 724: 249–259

    Article  CAS  Google Scholar 

  39. Wu YD, Cai YH, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett, 2014, 130: 277–280

    Article  CAS  Google Scholar 

  40. Di Y, Wang M, Zhang L, et al. A novel Ti45V45(AlCrMo)10 lightweight medium-entropy alloy with outstanding mechanical properties. Mater Lett, 2023, 339: 134089

    Article  CAS  Google Scholar 

  41. Yan X, Liaw PK, Zhang Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J Mater Sci Tech, 2022, 110: 109–116

    Article  CAS  Google Scholar 

  42. Wang J, Bai S, Tang Y, et al. Effect of the valence electron concentration on the yield strength of Ti−Zr−Nb−V high-entropy alloys. J Alloys Compd, 2021, 868: 159190

    Article  CAS  Google Scholar 

  43. Han Z, Meng L, Yang J, et al. Novel BCC VNbTa refractory multielement alloys with superior tensile properties. Mater Sci Eng-A, 2021, 825: 141908

    Article  CAS  Google Scholar 

  44. Li D, Dong Y, Zhang Z, et al. An as-cast Ti−V−Cr−Al light-weight medium entropy alloy with outstanding tensile properties. J Alloys Compd, 2021, 877: 160199

    Article  CAS  Google Scholar 

  45. Wang L, Ding J, Chen S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat Mater, 2023, 22: 950–957

    Article  CAS  Google Scholar 

  46. Wu M, Wang S, Xiao F, et al. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy. J Mater Sci Tech, 2022, 110: 210–215

    Article  CAS  Google Scholar 

  47. Li T, Wang S, Fan W, et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater, 2023, 246: 118728

    Article  CAS  Google Scholar 

  48. Orowan E. A type of plastic deformation new in metals. Nature, 1942, 149: 643–644

    Article  Google Scholar 

  49. Wang S, Wu M, Shu D, et al. Kinking in a refractory TiZrHfNb0.7 medium-entropy alloy. Mater Lett, 2020, 264: 127369

    Article  CAS  Google Scholar 

  50. Zheng Y, Zeng W, Wang Y, et al. Kink deformation in a beta titanium alloy at high strain rate. Mater Sci Eng-A, 2017, 702: 218–224

    Article  CAS  Google Scholar 

  51. Wang S, Wu M, Shu D, et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater, 2020, 201: 517–527

    Article  CAS  Google Scholar 

  52. Castany P, Pettinari-Sturmel F, Douin J, et al. TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti−6Al−4V alloy. Mater Sci Eng-A, 2017, 680: 85–91

    Article  CAS  Google Scholar 

  53. He F, Wei S, Cann JL, et al. Composition-dependent slip planarity in mechanically-stable face centered cubic complex concentrated alloys and its mechanical effects. Acta Mater, 2021, 220: 117314

    Article  CAS  Google Scholar 

  54. Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550

    Article  CAS  Google Scholar 

  55. Sudmanns M, El-Awady JA. The effect of local chemical ordering on dislocation activity in multi-principle element alloys: A three-dimensional discrete dislocation dynamics study. Acta Mater, 2021, 220: 117307

    Article  CAS  Google Scholar 

  56. Hsiung LL. On the mechanism of anomalous slip in bcc metals. Mater Sci Eng-A, 2010, 528: 329–337

    Article  Google Scholar 

  57. Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509: 6043–6048

    Article  CAS  Google Scholar 

  58. Labusch R. A statistical theory of solid solution hardening. Physica Status Solidi (b), 1970, 41: 659–669

    Article  Google Scholar 

  59. Wang SP, Xu J. (TiZrNbTa)−Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening. Intermetallics, 2018, 95: 59–72

    Article  CAS  Google Scholar 

  60. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B, 1951, 64: 747–753

    Article  Google Scholar 

  61. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25–28

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52074257) and Chinese Academy of Sciences (ZDBS-LY- JSC023).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhu ZW conceived the research. Zeng S, Zhou YK, Li H, and Chen JQ designed the experiments. Zeng S performed the experiments with assistance from Zhou YK, Li H, and Chen JQ. Zeng S, Zhu ZW, Gao HQ, Zhang HW, Fu HM, and Wang AM analyzed the date. Zeng S and Zhu ZW wrote the paper with input from Zhang HF and Zhao HW. All anthors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhengwang Zhu  (朱正旺).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Shuai Zeng is a PhD candidate at Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences. His current research focuses on the design and deformation mechanism of high-performance lightweight refractory high-entropy alloy materials.

Zhengwang Zhu received his PhD degree from the Institute of Metal Research, Chinese Academy of Sciences. From 2009 to 2010, he conducted research at Tohoku University (Japan). He joined the Institute of Metal Research, Chinese Academy of Sciences as an assistant professor in 2010, was promoted to professor in 2016, and now moved to Northeastern University. His research focuses on the development and application of high-performance alloys, in particular, metallic glasses and high-entropy alloys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Zhou, Y., Gao, H. et al. Novel as-cast Ti-rich refractory complex concentrated alloys with superior tensile properties. Sci. China Mater. 67, 311–320 (2024). https://doi.org/10.1007/s40843-023-2705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2705-2

Keywords

Navigation