Skip to main content
Log in

Transition metal (TM = V, Cr, Mn, Fe, Co, Ni)-doped GeSe diluted magnetic semiconductor thin films with high-temperature ferromagnetism

过渡金属(TM = V, Cr, Mn, Fe, Co, Ni)掺杂GeSe的高 温铁磁半导体薄膜

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Group-IV metal chalcogenides-based diluted magnetic semiconductor (DMS) thin films with high-temperature ferromagnetism (FM) are desirable for semiconductor spintronic devices. In this paper, transition-metal (TM = V, Cr, Mn, Fe, Co and Ni)-doped GeSe polycrystalline films are deposited by solid-source chemical vapor deposition (CVD). Magnetic measurements reveal that Mn-, Fe- and Co-doped GeSe films exhibit robust FM with Curie temperatures (TC) up to 277, 255 and 243 K, respectively, whereas V-, Cr- and Ni-doped GeSe films show weak FM. Magneto-transport measurements show that Mn-, Fe- and Co-doped GeSe films possess relatively high hole concentrations up to ∼1020 cm−3 at 300 K. Further analysis based on experimental and calculation results shows that the robust FM in Mn-, Fe- and Co-doped GeSe films is attributed to the carrier-enhanced Ruderman-Kittel-Kasuya-Yosida interaction. Our results give insights into the rich variety in TM-doped GeSe DMS thin films and offer a new platform for related fundamental research and device applications.

摘要

具有高温铁磁性的IV族金属硫族化物磁性半导体薄膜是半导体 自旋电子器件所需要的重要材料. 本文采用固体源化学气相沉积法制 备了一系列过渡金属元素(TM = V, Cr, Mn, Fe, Co和Ni)掺杂GeSe的 多晶半导体薄膜样品. 磁性测量表明, Mn, Fe和Co掺杂的GeSe薄膜表现 出较强的铁磁性, 居里温度(TC)分别高达277, 255和243 K, 而V, Cr和Ni 掺杂GeSe的多晶薄膜表现出较弱的铁磁性. 磁电输运测量表明, Mn, Fe 和Co掺杂GeSe的多晶薄膜具有相对较高的空穴浓度, 在300 K下高达 ∼1020 cm−3. 基于实验和计算结果的进一步分析表明, Mn, Fe和Co掺杂 GeSe的多晶薄膜中的强铁磁性归因于载流子增强的Ruderman-Kittel-Kasuya-Yosida相互作用. 我们的研究结果展示了过渡金属掺杂GeSe的 磁性半导体薄膜的丰富多样性, 并为相关基础研究和器件应用提供了 一个新平台.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuma Y, Asada H, Miyawaki S, et al. Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl Phys Lett, 2008, 93: 777

    Article  Google Scholar 

  2. Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86: 187–251

    Article  CAS  Google Scholar 

  3. Park S, Kim P, Lee YP, et al. Realization of room-temperature ferromagnetism and of improved carrier mobility in Mn-doped ZnO film by oxygen deficiency, introduced by hydrogen and heat treatments. Adv Mater, 2007, 19: 3496–3500

    Article  CAS  Google Scholar 

  4. Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11: 2584–2589

    Article  CAS  Google Scholar 

  5. Liu W, Zhang H, Shi J, et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat Commun, 2016, 7: 13497

    Article  CAS  Google Scholar 

  6. Wang H, Sun S, Lu J, et al. High Curie temperature ferromagnetism and high hole mobility in tensile strained Mn-doped SiGe thin films. Adv Funct Mater, 2020, 30: 2002513

    Article  CAS  Google Scholar 

  7. Shen L, Zhang X, Wang J, et al. Mn-doped SiGe thin films grown by UHV/CVD with room-temperature ferromagnetism and high hole mobility. Sci China Mater, 2022, 65: 2826–2832

    Article  CAS  Google Scholar 

  8. Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488–1495

    Article  CAS  Google Scholar 

  9. Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9: 965–974

    Article  CAS  Google Scholar 

  10. Li X, Yang J. Realizing two-dimensional magnetic semiconductors with enhanced curie temperature by antiaromatic ring based organometallic frameworks. J Am Chem Soc, 2018, 141: 109–112

    Article  Google Scholar 

  11. Story T, Gałazka RR, Frankel RB, et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 1986, 56: 777–779

    Article  CAS  Google Scholar 

  12. Nadolny AJ, Sadowski J, Taliashvili B, et al. Carrier induced ferromagnetism in epitaxial Sn1−xMnxTe layers. J Magn Magn Mater, 2002, 248: 134–141

    Article  CAS  Google Scholar 

  13. Li B, Xing T, Zhong M, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8: 1958

    Article  Google Scholar 

  14. Fukuma Y, Asada H, Moritake N, et al. Ferromagnetic semiconductor Ge1−xCrxTe with a Curie temperature of 180 K. Appl Phys Lett, 2007, 91: 092501

    Article  Google Scholar 

  15. Liu JD, Miao XS, Tong F, et al. Ferromagnetism and electronic transport in epitaxial Ge1−xFexTe thin film grown by pulsed laser deposition. Appl Phys Lett, 2013, 102: 102402

    Article  Google Scholar 

  16. Ma S, Li G, Li Z, et al. 2D magnetic semiconductor Fe3GeTe2 with few and single layers with a greatly enhanced intrinsic exchange bias by liquid-phase exfoliation. ACS Nano, 2022, 16: 19439–19450

    Article  CAS  Google Scholar 

  17. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  CAS  Google Scholar 

  18. Lin MW, Zhuang HL, Yan J, et al. Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4: 315–322

    Article  CAS  Google Scholar 

  19. Zhuang HL, Xie Y, Kent PRC, et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B, 2015, 92: 035407

    Article  Google Scholar 

  20. Sivadas N, Daniels MW, Swendsen RH, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91: 235425

    Article  Google Scholar 

  21. Yang L, Wu M, Yao K. Transition-metal-doped group-IV monochalcogenides: A combination of two-dimensional triferroics and diluted magnetic semiconductors. Nanotechnology, 2018, 29: 215703

    Article  Google Scholar 

  22. Mao Y, Guo G, Yuan J, et al. Edge-doping effects on the electronic and magnetic properties of zigzag germanium selenide nanoribbon. Appl Surf Sci, 2019, 464: 236–242

    Article  CAS  Google Scholar 

  23. Shu Z, Cai Y. Substitutional doped GeSe: Tunable oxidative states with strain engineering. J Mater Chem C, 2020, 8: 13655–13667

    Article  CAS  Google Scholar 

  24. Li D, Zhang X, He W, et al. Structure-dependent high-TC ferromagnetism in Mn-doped GeSe. Nanoscale, 2022, 14: 13343–13351

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  26. Zhao Y, Zhang Y, Yan P, et al. Increasing the photocatalytic properties of monolayer black phase GeSe by 3d transition metal doping: From ultraviolet to infrared absorption. Mol Catal, 2020, 496: 111195

    Article  CAS  Google Scholar 

  27. Wang X, Li Y, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139: 14976–14982

    Article  CAS  Google Scholar 

  28. Ribeiro HB, Ramos SLLM, Seixas L, et al. Edge phonons in layered orthorhombic GeS and GeSe monochalcogenides. Phys Rev B, 2019, 100: 094301

    Article  CAS  Google Scholar 

  29. Bellin C, Pawbake A, Paulatto L, et al. Functional monochalcogenides: Raman evidence linking properties, structure, and metavalent bonding. Phys Rev Lett, 2020, 125: 145301

    Article  CAS  Google Scholar 

  30. Li X, Zhang X, Lv X, et al. Synthesis and photoluminescence of high density GeSe triangular nanoplate arrays on Si substrates. Nanotechnology, 2020, 31: 285702

    Article  CAS  Google Scholar 

  31. Jackson K, Briley A, Grossman S, et al. Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study. Phys Rev B, 1999, 60: R14985–R14989

    Article  CAS  Google Scholar 

  32. Wiedigen S, Kramer T, Feuchter M, et al. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films. Appl Phys Lett, 2012, 100: 061904

    Article  Google Scholar 

  33. He T, Wang Z, Cao R, et al. Extrinsic photoconduction induced short-wavelength infrared photodetectors based on Ge-based chalcogenides. Small, 2021, 17: 2006765

    Article  CAS  Google Scholar 

  34. Liu G, Wu L, Chen X, et al. The investigations of characteristics of GeSe thin films and selector devices for phase change memory. J Alloys Compd, 2019, 792: 510–518

    Article  CAS  Google Scholar 

  35. Boschker H, Mathews M, Houwman EP, et al. Strong uniaxial in-plane magnetic anisotropy of (001)- and (011)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates. Phys Rev B, 2009, 79: 214425

    Article  Google Scholar 

  36. Kumar D, Singh S, Vishawakarma P, et al. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J Magn Magn Mater, 2016, 418: 99–106

    Article  CAS  Google Scholar 

  37. Kumar A, Tandon RP, Awana VPS. Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10−δ magneto superconductor. J Appl Phys, 2011, 110: 043926

    Article  Google Scholar 

  38. Zhou B, Yang X, Sui Y, et al. Alternative motif toward high-quality wurtzite MnSe nanorods via subtle sulfur element doping. Nanoscale, 2016, 8: 8784–8790

    Article  CAS  Google Scholar 

  39. Chen CC, Hsu YJ, Lin YF, et al. Superparamagnetism found in diluted magnetic semiconductor nanowires: Mn-doped CdSe. J Phys Chem C, 2008, 112: 17964–17968

    Article  CAS  Google Scholar 

  40. Takemura Y, Suto H, Honda N, et al. Characterization of FeSe thin films prepared on GaAs substrate by selenization technique. J Appl Phys, 1997, 81: 5177–5179

    Article  CAS  Google Scholar 

  41. Zhang M, Liu L, Yang H. Anomalous second ferromagnetic phase transition in Co0.08Bi1.92Se3 topological insulator. J Alloys Compd, 2016, 678: 463–467

    Article  CAS  Google Scholar 

  42. Jaeger C, Bihler C, Vallaitis T, et al. Spin-glass-like behavior of Ge:Mn. Phys Rev B, 2006, 74: 045330

    Article  Google Scholar 

  43. Cho S, Choi S, Hong SC, et al. Ferromagnetism in Mn-doped Ge. Phys Rev B, 2002, 66: 033303

    Article  Google Scholar 

  44. Zeng C, Erwin SC, Feldman LC, et al. Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl Phys Lett, 2003, 83: 5002–5004

    Article  CAS  Google Scholar 

  45. Wu WY, Tjiu WW, Wan W, et al. Endotaxial growth of FexGe single-crystals on Ge(001) substrates. CrystEngComm, 2018, 20: 2916–2922

    Article  CAS  Google Scholar 

  46. Tsvyashchenko AV, Sidorov VA, Fomicheva LN, et al. High pressure synthesis and magnetic properties of Cubic B20 MnGe and CoGe. Solid State Phenom, 2012, 190: 225–228

    Article  CAS  Google Scholar 

  47. Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B, 1972, 5: 4709–4714

    Article  Google Scholar 

  48. Cai SH, Chen XN, Huang MJ, et al. Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy. J Mater Chem A, 2022, 10: 772–778

    Article  CAS  Google Scholar 

  49. Sun XJ, Yang DD, Dong H, et al. ZIF-derived CoP as a cocatalyst for enhanced photocatalytic H2 production activity of g-C3N4. Sustain Energy Fuels, 2018, 2: 1356–1361

    Article  CAS  Google Scholar 

  50. Reddy AJ, Kokila MK, Nagabhushana H, et al. EPR and photoluminescence studies of ZnO:Mn nanophosphors prepared by solution combustion route. Spectrochim Acta Part A-Mol Biomol Spectr, 2011, 79: 476–480

    Article  CAS  Google Scholar 

  51. Zvereva EA, Savelieva OA, Primenko AE, et al. Anomalies in electron spin resonance spectra of Ge1−xMnxTe diluted magnetic semiconductors. J Appl Phys, 2010, 108: 093923

    Article  Google Scholar 

  52. Misra SK, Andronenko SI, Thurber A, et al. An X- and Q-band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1−xFexO. J Magn Magn Mater, 2014, 363: 82–87

    Article  CAS  Google Scholar 

  53. Li C, Lou X, Shen M, et al. High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins. Energy Storage Mater, 2017, 7: 195–202

    Article  Google Scholar 

  54. Efros AL, Shklovskii BI. Coulomb gap and low temperature conductivity of disordered systems. J Phys C-Solid State Phys, 1975, 8: L49–L51

    Article  CAS  Google Scholar 

  55. Chen WQ, Lim ST, Sim CH, et al. Optical, magnetic, and transport behaviors of Ge1−xMnxTe ferromagnetic semiconductors grown by molecular-beam epitaxy. J Appl Phys, 2008, 104: 063912

    Article  Google Scholar 

  56. Shah M, Nadeem M, Atif M. Dielectric relaxation with polaronic and variable range hopping mechanisms of grains and grain boundaries in Pr0.8Ca0.2MnO3. J Appl Phys, 2012, 112: 103718

    Article  Google Scholar 

  57. Fukuma Y, Asada H, Arifuku M, et al. Carrier-enhanced ferromagnetism in Ge1−xMnxTe. Appl Phys Lett, 2002, 80: 1013–1015

    Article  CAS  Google Scholar 

  58. Lim ST, Bi JF, Hui L, et al. Exchange interaction and Curie temperature in Ge1−xMnxTe ferromagnetic semiconductors. J Appl Phys, 2011, 110: 023905

    Article  Google Scholar 

  59. Wang X, Bian C, He Y, et al. Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Mater Today, 2021, 45: 35–43

    Article  CAS  Google Scholar 

  60. Fukuma Y, Arifuku M, Asada H, et al. Correlation between magnetic properties and carrier concentration in Ge1−xMnxTe. J Appl Phys, 2002, 91: 7502–7504

    Article  CAS  Google Scholar 

  61. Sato K, Bergqvist L, Kudrnovský J, et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 2014, 82: 1633–1690

    Article  Google Scholar 

  62. Lan M, Xiang G, Zhang X. Electronic structures and magnetic stabilities of 2D Mn-doped GaAs nanosheets: The role of long-range exchange interactions and doping strategies. J Appl Phys, 2014, 116: 083912

    Article  Google Scholar 

  63. Wen Y, Liu Z, Zhang Y, et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett, 2020, 20: 3130–3139

    Article  CAS  Google Scholar 

  64. Chen WQ, Teo KL, Lim ST, et al. Magnetic and transport behaviors in Ge1-xMnxTe with high Mn composition. Appl Phys Lett, 2007, 90: 142514

    Article  Google Scholar 

  65. Chen WQ, Teo KL, Jalil MBA, et al. Compositional dependencies of ferromagnetic Ge1−xMnxTe grown by solid-source molecular-beam epitaxy. J Appl Phys, 2006, 99: 08D515

    Article  Google Scholar 

  66. Hassan M, Springholz G, Lechner RT, et al. Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature. J Cryst Growth, 2011, 323: 363–367

    Article  CAS  Google Scholar 

  67. Liu J, Cheng X, Tong F, et al. Spin-glass behavior and anomalous magnetoresistance in ferromagnetic Ge1−xFexTe epilayer. J Appl Phys, 2014, 116: 043901

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52172272). We thank the Analytical & Testing Center of Sichuan University for the SEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li D prepared the samples and performed the experiments; Zhang X, He W, and Peng Y provided the resources and supervised the project; Li D, Zhang X, and Xiang G wrote the paper; Xiang G designed and supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xi Zhang  (张析) or Gang Xiang  (向钢).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Deren Li is a PhD student at Sichuan University under the supervision of Prof. Gang Xiang. His current research interests focus on the IV–VI diluted magnetic semiconductors as well as the related functional devices.

Gang Xiang earned his PhD degree in condensed matter physics from Pennsylvania State University-University Park in 2006. Then he worked at Pennsylvania State University-University Park (2006–2007) and also at Ohio State University-Columbus (2007–2010) as a postdoctoral researcher. He joined Sichuan University in 2010. His research interests include the design and fabrication of novel magnetic materials and semiconductors, and their spintronic and electronic applications.

Supporting Information

40843_2023_2657_MOESM1_ESM.pdf

Transition metal (TM = V, Cr, Mn, Fe, Co, Ni)-doped GeSe diluted magnetic semiconductor thin films with high-temperature ferromagnetism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, X., He, W. et al. Transition metal (TM = V, Cr, Mn, Fe, Co, Ni)-doped GeSe diluted magnetic semiconductor thin films with high-temperature ferromagnetism. Sci. China Mater. 67, 279–288 (2024). https://doi.org/10.1007/s40843-023-2657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2657-2

Keywords

Navigation